首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;
admin
2018-08-03
12
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求矩阵B,使A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]B;
选项
答案
由题设条件,有 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
] =[α
1
,α
2
,α
3
][*] 所以,B=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Trg4777K
0
考研数学一
相关试题推荐
设X1,…,X9为来自正态总体X~N(μ,σ2)的简单随机样本,令证明:Z~t(2).
求f(x)=的间断点并判断其类型.
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1—a)T是方程组(A+E)X=0的解,则a=___________.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
随机试题
考试录用国家公务员的主要环节不包括()
小儿麻疹疾病过程中最常见的逆证是()。
《建设工程安全生产管理条例》规定,施工单位的项目负责人应根据工程的特点组织制定安全施工措施,消除安全事故隐患,()报告生产安全事故。
背景资料:某办公楼工程,地下一层,地上十二层,总建筑面积26800m2,筏板基础,框架剪力墙结构。建设单位与某施工总承包单位签订了施工总承包合同。按照合同约定,施工总承包单位将装饰装修工程分包给了符合资质条件的专业分包单位。合同履行过程
下列工程建设其他费用中,属于与项目建设有关的其他费用的有()。
下列纳税人中,税务机关有权核定其应纳税额的有()。
硅藻的大量生长为海域内几亿吨甚至几十亿吨磷虾的生长提供了充足的条件,磷虾用途甚广,它将是人类大有希望的蛋白质来源之一。磷虾是南极生态中的一个关键性生物,没有它就没有那么多的鲸类、企鹅和海豹,________。填入画横线部分最恰当的一项是:
Whatdoesthehamburgersayaboutourmodemfoodeconomy?Alot,actually.OverthepastseveralyearsWaldoJaquithintendedto
局域网是计算机网络中最流行的一种形式。下面有关局域网的叙述中错误的是()。
下列关于无线局域网设备的描述中,错误的是
最新回复
(
0
)