首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为( ).
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为( ).
admin
2017-12-18
62
问题
设A=(α
1
,α
2
,α
3
,α
4
)为四阶方阵,且α
1
,α
2
,α
3
,α
4
为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)
T
,则方程组A*X=0的基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
,α
3
,α
1
+α
3
C、α
1
,α
3
,α
4
D、α
1
+α
2
,α
2
+2α
4
,α
4
答案
D
解析
由r(A)=3得r(A*)=1,则A*X=0的基础解系由三个线性无关的解向量构成,由α
1
-4α
3
=0得α
1
,α
3
成比例,显然(A)、(B)、(C)不对,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/Trr4777K
0
考研数学一
相关试题推荐
设矩阵可逆,为A*对应的特征向量.判断A可否对角化.
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=求方程组(Ⅱ)BX=0的基础解系;
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:
求二元函数z=f(x,y)=x2y(4一x—y)在由z轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
已知点P(1,0,一1)与点Q(3,1,2),在平面x一2y+z=12上求一点M,使得|PM|+|MQ|最小。
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)的极值
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
随机试题
Thepostofficenoticeda______increaseinmailatChristmas.
Thereareadvantagesanddisadvantagesto【21】AsianandWesterneducationalmethod.Forexample,oneadvantage【22】theeducationi
A.胆B.胃C.小肠D.三焦E.膀胱
下列哪项不是脾的生理功能( )。
与同业拆借相比,商业银行的债券回购市场的特点有()。
2011年9月21日上午,乌坎村400多名村民因土地问题、财务问题、选举问题对村干部不满,到陆丰市政府非正常上访,当日下午,上访部分村民在村里及村周边企业聚集、打砸、毁坏他人公共财物和冲击围困村委会、公安边防派出所。次日上午,部分村民组织阻挠、打砸进村维
六一儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元。如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少为:
已知类IMS中两个成员函数的声明为“voidlisten()const;”与“voidspeak();”,另有两个对象的定义为“IMSobj1;”与“constIMSobj2;”,则下列语句中,产生编译错误的是()。
例如:小船上一河条有河上有一条小船。玛丽词典了德语丢一本
Whyrosesareredandvioletsareblue?Didyoueverwonderwhyyouseethecolorsyoudoorifotheranimalsseethesameco
最新回复
(
0
)