首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3. 求|A*+2E|
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3. 求|A*+2E|
admin
2015-07-22
90
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=一ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
一ξ
2
一2ξ
3
,Aξ
3
=2ξ
1
一2ξ
2
一ξ
3
.
求|A
*
+2E|
选项
答案
因为|A|=一5,所以A
*
的特征值为1,一5,一5,故A
*
+2E的特征值为3,一3,一3.从而|A
*
+2E|=27.
解析
转载请注明原文地址:https://kaotiyun.com/show/EIw4777K
0
考研数学一
相关试题推荐
若f(x)在x=0的某邻域内二阶连续可导,且,则下列正确的是().
设z=xf(y/x)+yg(x/y),其中f,g二阶可导,证明:
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3),证明:存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设矩阵,矩阵B=(kE+A)2,求对角矩阵A,使得B和A相似,并问k为何值时,B为正定矩阵.
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设A=(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设随机变量X和Y相互独立且都服从正态分布N(0,1),而X1,X2,…,X9和Y1,Y2,…Y9分别是来自总体X和Y的简单随机样本,求统计量所服从的分布,并指明参数.
随机试题
只有免疫原性而无抗原性的物质称为不完全抗原,它包括肿瘤抗原、动物血清等。()
资本周转的时间是指__________。从资本周转的角度来考察资本的构成,划分为固定资本和流动资本的资本是__________。
Thewallwasbuiltalongtheriver______floods.
男性,25岁,发现蛋白尿、血尿1个月,伴乏力、食欲不振,既往慢性乙肝病史2年。最可能的诊断是
某市国税局接到群众举报,市属某工贸公司有进货不入账,企图逃税的行为,经查证责令该公司在5日内缴纳税款。第2天该公司不但未去缴税,反而将账户上的资金转走,税务局得到消息后,便责令该公司提供纳税担保。该公司到市政府找到主管部门,主管部门向国税局做了口头纳税保证
商品经济产生和发展的根本条件是()。
火塘是藏族家庭起居活动的中心。()
【2016下】论述如何做好幼小衔接工作。
一项最新研究发现,经常喝酸奶可降低儿童患蛀牙的风险。在此之前,也有研究人员提出酸奶可预防儿童蛀牙,还有研究显示,黄油、奶酪和牛奶对预防蛀牙并没有明显效果。虽然多喝酸奶对儿童的牙齿有保护作用,但酸奶能降低蛀牙风险的原因仍不明确。目前一种说法是酸奶中含有的蛋白
VisualFoxPro在SQL方面,不提供的功能是
最新回复
(
0
)