首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4x+excosy)e2x.若f(0)=0,f’(0) =0,求f(u)的表达式.
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4x+excosy)e2x.若f(0)=0,f’(0) =0,求f(u)的表达式.
admin
2021-01-19
78
问题
设函数f(u)具有2阶连续导数,z=f(e
x
cosy)满足
=(4x+e
x
cosy)e
2x
.若f(0)=0,f’(0) =0,求f(u)的表达式.
选项
答案
令e
x
cosy=u,则 [*] 将以上两个式子代入 [*]= (4z+e
x
cosy)e
2x
得 f"(u)=4f(u)+u 即 f"(u)一4f(u)=u 以上方程对应的齐次方程的特征方程为r
2
一4=0,特征根为r=±2,齐次方程的通解为 f(u)=C
1
e
2u
+ C
2
e
一2u
设非齐次方程的特解为f
*
=au+b,代入非齐次方程得a=[*],b=0. 则原方程的通解为f(u)=C
1
e
2u
+ C
2
e
一2u
一[*] 由f(0)=0,f’(0)=0得C
1
=[*]则 f(u)=[*](e
2u
一e
一2u
一4u).
解析
转载请注明原文地址:https://kaotiyun.com/show/Tw84777K
0
考研数学二
相关试题推荐
设A是3阶矩阵,有特征值λ1=1,λ2=-1,λ3=0,对应的特征向量分别是ξ1,ξ2,ξ3,k1,k2是任意常数,则非齐次方程组Ax=ξ1﹢ξ2z的通解是()
设D为y=χ,χ=0,y=1所围成区域,则arctanydχdy=().
假设曲线ι1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1A*P1=().
已知三阶矩阵A的行列式|A|=一3,A*为A的伴随矩阵,AT为矩阵A的转置。如果kA的逆矩阵为A*一|AT|A—1,则k=______。
定积分中值定理的条件是f(x)在[a,b]上连续,结论是___________。
已知矩阵的特征值的和为3,特征值的乘积是一24,则b=______。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t=______。
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x±a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
随机试题
与Ⅱ型超敏反应发生无关的成分是
急性心肌梗死后冠脉再通(再灌注)的最佳时间为起病后( )。
为了适应经济开发区规模不断扩大的需要,某市政府计划在该区新建一座110kV的变电站。新建变电站周边居住人口密集,站址内有地下给水管道和一幢六层废弃民宅。为加强现场文明施工管理,项目部制订了相应的现场环境保护措施,主要措施如下:措施一:施工前对施工
某高层建筑,设计建筑高度为68.0m,总建筑面积为91200m2。标准层的建筑面积为2176m2,每层划分为1个防火分区;一至二层为上、下连通的大堂,三层设置会议室和多功能厅。四层以上用于办公。高层主体建筑附建了3层裙房,并采用防火墙及甲级防火门与高层主体
运动处方定量化与科学性的核心要素是()。
2011年1—7月份,全国固定资产投资152420亿元,同比增长25.4%,比1—6月份回落0.2个百分点。其中,7月份全国固定资产投资27853亿元。分产业看,1—7月份,第一产业投资3539亿元,同比增长22.8%;第二产业投资66777亿
某区政府积极适应社会治理工作新常态,运用互联网、大数据、云计算等新技术与社会治理工作深度融合,通过微信公众平台、QQ等网络移动终端及时为居民服务。这一做法()。①实现了科学民主决策②提升了社会治理水平③贯彻了为民服务理念④旨在
W:Youseemtohavealotofworkatyouroffice.You’vealwaysbeenstayinglateandworkingovertime.M:______
Asmighthavebeenexpected,itwas_____________(没多久)Johntriedtobreakallhispromises.
ThewordYogaitselfcomesfromanancientSanskritwordmeaning"union".Whatkindofuniondoyouthinkthewordrefersto?Wh
最新回复
(
0
)