首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4x+excosy)e2x.若f(0)=0,f’(0) =0,求f(u)的表达式.
设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4x+excosy)e2x.若f(0)=0,f’(0) =0,求f(u)的表达式.
admin
2021-01-19
127
问题
设函数f(u)具有2阶连续导数,z=f(e
x
cosy)满足
=(4x+e
x
cosy)e
2x
.若f(0)=0,f’(0) =0,求f(u)的表达式.
选项
答案
令e
x
cosy=u,则 [*] 将以上两个式子代入 [*]= (4z+e
x
cosy)e
2x
得 f"(u)=4f(u)+u 即 f"(u)一4f(u)=u 以上方程对应的齐次方程的特征方程为r
2
一4=0,特征根为r=±2,齐次方程的通解为 f(u)=C
1
e
2u
+ C
2
e
一2u
设非齐次方程的特解为f
*
=au+b,代入非齐次方程得a=[*],b=0. 则原方程的通解为f(u)=C
1
e
2u
+ C
2
e
一2u
一[*] 由f(0)=0,f’(0)=0得C
1
=[*]则 f(u)=[*](e
2u
一e
一2u
一4u).
解析
转载请注明原文地址:https://kaotiyun.com/show/Tw84777K
0
考研数学二
相关试题推荐
[*]
x=-1
设函数y=,则y(n)(0)=________。
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=__________。
在xOy平面上,平面曲线方程y=,则平面曲线与x轴的交点坐标是________。
设f(χ)为偶函数,且f′(-1)=2,则=_______.
(x2+xy-x)dxdy=_______,其中D由直线y=z,y=2x及x=1围成.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
求下列不定积分:
改变二次积分的积分次序,并求积分I的值.
随机试题
女性,41岁,半小时前被车撞伤,诉剧烈胸痛,并有胸闷、呼吸困难、发绀。胸片:左侧第2~9肋多处骨折,右侧肋骨未见明显骨折征象。此患者发生呼吸衰竭的主要原因是
A.氯硝西泮B.苯妥英钠C.卡马西平D.乙琥胺E.扑痫酮癫痫失神发作治疗首选
蛋白质一能量营养不良的最主要病因是
下列说法正确的是()
下列施工投标的内容中,关于投标计算的表述有误的是()。
王某2013年1月1日与地处某镇的饲料厂签订承包合同。经营期限5年。承包费50万元(每年10万元)。合同规定,承包期内不得改变名称,仍以饲料厂的名义对外从事经营业务。王某对经营成果拥有所有权,上缴的承包费在每年的经营成果中支付。该厂为增值税一般纳税人。饲料
现金折扣发生时,销售方应将现金折扣对应的金额确认为营业外支出。()
某班照合影,要求第一排站9人,第二排站10人,第三排站11人,班主任必须站在第一排的中间,则可能的站法有()种.
在我国近代,采取民商分立民事立法体制的政权有()。
Listenbetter,managebetterAThereisagreatdifferencebetweenlisteningandhearing.Youshouldmakeeffortsinliste
最新回复
(
0
)