首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
admin
2019-07-10
97
问题
下述命题
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数.
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为( )
选项
A、1.
B、2
C、3
D、4
答案
B
解析
①与③是正确的,②与①足小正确的,正确的个数为2.①是正确的,理由如下:设x
0
∈(-∞,+∞),则它必含某区间[a,b]中,由于题设f(x)任意区间间[a,b]上连续。故在x
0
处连续,所以(一∞.+∞)上连续,论证的关键之处是:函数f(x)的连续性是按点来讨沦的,在区间上每一点连续,就说它在该区间连续。②函数f(x)[a,b]上有界性的“界”是与区间有关的,例如f(x)=x在区间[a,b]上,|f(x)|≤max{|a|,
这个“界”与区间[a,b]有关,容易看出,在区间(一∞,+∞)上,此f(x).就无界了.②不正确.⑧是正确的.其理由是:设x
0
∈(一∞,+∞).所以,f(x
0
)>0且f(x)x
0
处连续,由连续函数的四则运算知,
在x
0
处也连续。所以
连续.④是不正确的,例如函数f(x)=e
-x
2
,在区间(一∞,一∞)上,0<f(x)≤1,所有f(x)在(一∞,+∞)上有界,而
在(-∞,+∞)上无界.这是因为当x→±∞时,
转载请注明原文地址:https://kaotiyun.com/show/WbN4777K
0
考研数学二
相关试题推荐
曲线y=(x-5)x2/3的拐点坐标为_______。
曲线y=+ln(1+ex)的渐近线的条数为()
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
已知线性方程组(1)a,b为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时,求出方程组的全部解.
设二维非零向量a不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1—4-2)。
求证:当x>0时,有不等式arctanx+.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
随机试题
假设检验的目的为()
哪项符合原发性心肌病
卡比多巴治疗帕金森病的机制是
1999年试题【试题要求】某建筑结构设计要求在适当部位设变形缝,缝宽80~110mm。现要求根据题目规定的材料画出变形缝构造详图(在图2.3—3上作答)。需满足适应建筑变形、防水等技术要求,并注出材料名称、规格及有关构造尺寸。1.设计任务及构造要求
《重大危险源辨识》(GB18218—2000)中的重大危险源的英文解释是______。
评定无形资产的重估价值,如果是自创的或者自身拥有的无形资产,应根据()评估。
2020年8月,某企业购买一座房产专用于职工食堂,取得增值税专用发票上注明增值税税额55万元。2022年2月,该企业将上述房产改变用途,改作为企业产品展厅。改变用途时不动产净值率96%,则以下说法正确的是()。
()被称为德国浪漫主义歌剧奠基人。
下列各句中没有错别字的一句是:
Anessentialpartofthemarketingprocess,advertisingcanbetremendouslyinfluentialinsellingproducts.Notonlydoesadver
最新回复
(
0
)