首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2019-05-11
48
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)。证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*] 若x
1
=x
1
,令x=x
1
,则F(c)=0。 若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
] [*] (a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
) [*] (a,b),有F’’(x)=0,即f’’(ξ)=g’’(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/TwV4777K
0
考研数学二
相关试题推荐
设f(χ)=|χ-a|g(χ),其中g(χ)连续,讨论f′(a)的存在性.
计算(a>0),其中D是由曲线y=-a+和直线y=-χ所围成的区域.
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
用待定系数法求方程yy〞+2yˊ=5的特解时,应设特解[].
计算,其中D为单位圆血x2+y2=1所围成的第一象限的部分.
设函数f(μ)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
记行列式为f(x),则方程f(x)=0的根的个数为()
随机试题
磁电式仪表只能测量直流。()
患者,女性,36岁,因风湿性关节炎引起关节疼痛,在服用阿司匹林时,护士嘱其饭后服用的目的是
急性坏死溃疡性龈炎不及时治疗可发展为急性坏死溃疡性牙周炎,临床表现为
商业银行开展理财产品销售业务出现的情形中,应由中国银监会或其派出机构责令限期改正,除按照《商业银行理财产品销售管理办法》第74条规定采取相关监管措施外,还可以并处20万以上50万元以下罚款的包括()。
丽岛实业是香港一家餐饮企业集团,已经在香港经营餐饮业30余年。丽岛实业在香港开设了20多家“丽岛大酒楼”、“丽岛皇宫”等命名的传统粤菜酒楼,丽岛实业的酒楼面向中、高档消费者,虽然菜式价格高于一般粤菜酒楼,但其菜式以高质量取胜,生意门庭若市,已经形成了一批忠
乙公司是一家同时在境内外三地资本市场上市的煤业集团,其所有的产品均在国内销售。乙公司成功收购了澳大利亚H公司,获得H公司的控股权。H公司在澳大利亚拥有的煤炭资源为15亿吨,并拥有澳大利亚最大的煤炭出口港,主要客户为欧洲、美洲及澳大利亚本土的钢铁制造商和发电
下列房地产中,属于投资性房地产的有()。
信息时代的迅速发展,对高知识阶层的需求越来越大。所以,未来社会,没有信息技术的人将在社会上很难立足。下述哪项对上述说法提出质疑?
失之毫厘:谬以千里
A、TheIndianswerecowardtodrawbackintothemountains.B、TheIndianswereasbadaswhatHollywoodfilmsshow.C、TheIndians
最新回复
(
0
)