首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,a1,a2,a3是三维线性无关的向量组,且Aa1=a1+3a2,Aa2—5a1一a2,Aa3=a1一a2+4a3. (I)求矩阵A的特征值; (Ⅱ)求可逆Q,使得Q-1AQ为对角阵.
设A为三阶矩阵,a1,a2,a3是三维线性无关的向量组,且Aa1=a1+3a2,Aa2—5a1一a2,Aa3=a1一a2+4a3. (I)求矩阵A的特征值; (Ⅱ)求可逆Q,使得Q-1AQ为对角阵.
admin
2020-05-16
47
问题
设A为三阶矩阵,a
1
,a
2
,a
3
是三维线性无关的向量组,且Aa
1
=a
1
+3a
2
,Aa
2
—5a
1
一a
2
,Aa
3
=a
1
一a
2
+4a
3
.
(I)求矩阵A的特征值;
(Ⅱ)求可逆Q,使得Q
-1
AQ为对角阵.
选项
答案
(I)令P=(a
1
,a
2
,a
3
),因为a
1
,a
2
,a
3
线性无关,所以P可逆. 因为Aa
1
=a
1
+3a
2
,Aa
2
=5a
1
一a
2
,a
1
一a
2
+4a
3
, 所以(Aa
1
,Aa
2
,Aa
3
)=(a
1
+3a
2
,5a
1
一a
1
,a
1
一a
2
+4a
3
), 从而A(a
1
,a
2
,a
3
)=(a
1
,a
2
,a
3
)[*],即AP=P[*]或者 p
-1
Ap=[*]=B,于是有A~B. 由|XE-B|=[*]=(λ+4)(λ一4)
2
=0 得A的特征值为λ
1
=-4,λ
2
=λ
3
=4. (Ⅱ)因为A~B,所以B的特征值为λ
1
=一4,λ
2
=λ
3
=4. 当λ
1
=一4时,由(一4E一B)X=0得ξ
1
=[*]; 当λ
2
=λ
3
=4时,由(4E—B)X=0得ξ
2
=[*], 令P
1
=(ξ
1
,ξ
2
,ξ
3
)=[*],则[*], 因为P
-1
AP=B,所以 [*] 取Q=PP
1
=(-a
1
+a
2
,5a
1
+3a
2
+a
1
+3a
3
),则Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U1x4777K
0
考研数学三
相关试题推荐
设f(x)=,则f(x)的极值为______,f(x)的拐点坐标为__________。
求函数f(x,y)=xy(a一x—y)的极值.
设X1,X2,…Xn是独立同分布的随机变量序列,EXi=μ,DXi=σ2,i=1,2。…,n,令Yn=证明:随机变量序列{Yn}依概率收敛于μ.
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=__________.
设一阶非齐次线性微分方程yˊ+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
设函数f(x,y)=,且g有二阶导数,求证:
计算曲面积分,其中S为有向曲面z=x2+y2(0≤z≤1)其法向量与z轴正向的夹角为锐角.
函数,则极限()
设cosx-1=xsina(x),其中|a(x)|<π/2,则当x→0时,a(x)是
随机试题
A.散发性发病B.小流行C.流行D.大流行E.暴发流行传染病病例发病时间的分布高峰集中于一个短时间之内者称为()
初孕妇,34周孕,既往有再生障碍性贫血病史,现血红蛋白为50g/L,血小板45×109/L,应采取的措施是
碳酸氢钠溶液煮沸灭菌时,其煮沸时间一般为
患者已确诊为骨巨细胞瘤,局部皮肤表浅静脉怒张,肿胀与压痛均显著,触诊有乒乓球样感觉。X片:骨皮质已破坏,断裂。病理报告:骨巨细胞瘤Ⅲ级。治疗应选择()
下列选项中,不属于合理经济规模衡量指标的是()。
砖基础墙的防潮层位置宜在室内地面标高()处。
税务机关欠税清缴制度包括()。
ItisonOctober1,2009thatthePeoplesRepublicofChina_______its60thbirthday.
公文如有附件,按顺序应当注明附件的()。
简述乔姆斯基的转换生成语法理论。
最新回复
(
0
)