首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2018-08-01
76
问题
(08)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关.从而由③式知k
1
=k
2
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/U2j4777K
0
考研数学二
相关试题推荐
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设函数f(x)=(α>0,β>0).若(x)在x=0处连续,则
求微分方程y"-y’+2y=0的通解.
求微分方程(y-x3)dx-2xdy=0的通解.
设n维列向量α=(a,0,…,0,a)T,其中a
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设A=有三个线性无关的特征向量,则a=_______.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
建设社会主义核心价值体系,最根本的是()
患者,27岁,男性,3天前因汗出受风,诱发头身酸痛、恶寒、发热、咽痛;旋即出现颜面及双下肢水肿,自服“解热镇痛药”热退肿不消。刻下症:颜面及双下肢水肿,尿少色黄赤,腰痛,周身不舒,咽喉红肿疼痛,舌暗红,苔薄黄,脉滑数而见浮象。应诊断为
血吸虫病的并发症包括
依施工合同示范文本规定,下列关于竣工前的单机无负荷试车的说法,正确的是( )。
债权债务的清查方法是()。
正常情况下,运用收益法评估房地产时的房地产收益应该是房地产()。
下列属于可再生资源的是()。
Dukeboxhasbeenoneofthemostprofitablerecordingcompaniesinthemusicindustryfor______threedecades.
Americanwomenwilloccasionallywearshortskirts,sleevelessshirts,makeup,perfume,mightevenshowsomecleavage:she’sju
A、Cleaningfluids.B、Bums.C、Unusualsmell.D、Milk.A
最新回复
(
0
)