首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2018-08-01
110
问题
(08)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关.从而由③式知k
1
=k
2
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/U2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
就a,b的不同取值,讨论方程组解的情况.
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3-4x32为标准形.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
随机试题
男,68岁。反复咳嗽喘息20余年,加重1周入院。不吸氧时动脉血气分析结果显示PaO255mmHg,PaCO260mmHg。该患者发生低氧血症的机制主要是
东汉散文创作的基本状况是()。
一项糖尿病筛查试验的结果如下血糖试验的灵敏度是
公司战略管理的全过程包括()。
土石坝坝顶常设混凝土或浆砌石防浪墙,其墙顶高于坝顶一般为()m。
现今仍行“阿注”婚的民族是()。
我国第八次基础教育课程改革倡导自主学习、合作学习和探究学习,简述你对这三种学习方法的理解。
教育研究过程中研究设计阶段的基本内容是什么?
对立统一规律是唯物辩证法的核心,这是因为()
Nexttimeyougazeoutside【C1】______acoldwinterdayandthinkhowdeadeverythingappears,takeacloserlook.Naturema
最新回复
(
0
)