首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2018-11-20
63
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α,α,α3是AX=β的3个线性无关的解,则,α一αl,α3一αl是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4一r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. [*] 由r(A)=2,得出a=2,b=一3. 代入后继续作初等行变换化为简单阶梯形矩阵: [*] 得同解方程组 [*] 求出一个特解(2,一3,0,0)
T
和AX=0的基础解系(一2,1,1,0)
T
,(4,一5,0,1)
T
.得到方程组的通解:(2,一3,0,)
T
+c
1
(一2,1,1,0)
T
+c
2
(4,一5,0,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/U5W4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|一A1一2A2,2A2+3A3,一3A3+2A2|=________.
设,求B一1.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2一8x1x3一4x2x3经过正交变换化为标准形5y12+by22一4y32,求:正交变换的矩阵Q.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求矩阵A.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在η∈(a,b),使得f’(η)一3f’(17)+2f(η)=0.
设总体X~N(μ,σ2),其中μ已知,σ2>0为未知参数,X1,X2,…,Xn是来自总体X的样本,则σ2的置信度为1一a的置信区间为().
设随机变量且协方差cov(X,Y)=则X与Y的联合分布为________.
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}()
随机试题
A.随机观察、会谈法B.定式访谈法C.定式观察法D.评定量表法E.心理测验
肺癌所致阻塞性肺炎有以下临床征象.除了
申请成为国家圃或专业圃的受理及审核机构均为直属检验检疫局。( )
下列税种中,属于财产税的是()。
心智技能与操作技能相比,具有()特点。
下面标点符号使用正确的一项是()。
在世界杯金靴奖的争夺中,如果斯内德没有获得金靴奖并且穆勒助攻次数比斯内德多的话,弗兰将获得金靴奖。补充以下哪项,能够推出斯内德获得了金靴奖?
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有二阶连续偏导数,求
Besides"American"characteristics-individualism,self-reliance,informality,punctualityanddirectness,therearealsosome"n
CurrentChallengesConfrontingU.S.HigherEducationThefirstchallenge:forceofthemarketplace•Currentsituation:—pr
最新回复
(
0
)