首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明此方程组的系数矩阵A的秩为2. (2)求a,b的值和方程组的通解.
admin
2018-11-20
35
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明此方程组的系数矩阵A的秩为2.
(2)求a,b的值和方程组的通解.
选项
答案
(1)设α,α,α3是AX=β的3个线性无关的解,则,α一αl,α3一αl是AX=0的2个线性无关的解.于是AX=0的解集合的秩不小于2,即4一r(A)≥2,r(A)≤2, 又因为A的行向量是两两线性无关的,所以r(A)≥2. 两个不等式说明了r(A)=2. [*] 由r(A)=2,得出a=2,b=一3. 代入后继续作初等行变换化为简单阶梯形矩阵: [*] 得同解方程组 [*] 求出一个特解(2,一3,0,0)
T
和AX=0的基础解系(一2,1,1,0)
T
,(4,一5,0,1)
T
.得到方程组的通解:(2,一3,0,)
T
+c
1
(一2,1,1,0)
T
+c
2
(4,一5,0,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/U5W4777K
0
考研数学三
相关试题推荐
设A,B为两个随机事件,则P{(+B)(A+B)}=________.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设矩阵求可逆矩阵P,使得PTA2P为对角矩阵.
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在c∈(a,b),使得f(f)=0;
设α1,α2,α3,α4为四维非零列向量,A=[α1,α2,α3,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T,则方程组A*X=0的基础解系为().
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
已知方程组有解,证明:方程组无解。
假设二维随机变量(X1,X2)的协方差矩阵为其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
随机试题
微机中1KB字节表示的二进制位数是1024。()
免疫增强剂包括
碘剂主要用于治疗
我国现在引起慢性肾功能不全的病因最常见的是
轻金属中钛合金比纯钛性能上得到很大提高的有()。
私募证券是指向不特定的社会公众投资者发行的证券,其审查条件相对宽松,投资者也少,不采取公示制度。()
一旦业主大会成立或者全体业主选聘了物业服务企业,业主与物业服务企业签订的合同发生效力,就意味着()。
制订科学的、切实可行的计划是控制的()。
相对于单一内核结构,采用微内核结构设计实现操作系统具有诸多好处,但是,()并不是微内核的优势。
牛胚具有三个胚层的时期是______。
最新回复
(
0
)