首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
admin
2014-02-06
84
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
一α
3
=(2,0,一5,4)
T
,α
2
+2α
3
=(3,l2,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通解x=
选项
A、
B、
C、
D、
答案
A
解析
由于n一r(A)=4—2=2,故方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除C,D.因为A
(α
2
+2α
3
)=b,A(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)
T
都是方程组Ax=b的解.A和B中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.由于3(α
1
+α
2
一α
3
)一(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
一α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/U7F4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料1钟南山建议:“我总的看法,就是没有特殊的情况,不要去武汉。”2020年1月18日钟南山院士从深圳抢救完相关病例回到广州,当天下午还在广东省卫健委开会时,便接到通知要他马上赶往武汉。当天的航班已经买不到机票了,助手
党的十九大报告指出,必须认识到,我国社会主要矛盾的变化是关系全局的历史性变化,对党和国家工作提出了许多新要求。我们要在继续推动发展的基础上,着力解决好发展不平衡不充分问题。必须认识到,我国社会主要矛盾的变化没有改变
马克思强调:“无论哪一个社会形态,在它所能容纳的全部生产力发挥出来以前,是绝不会灭亡的;而新的更高的生产关系,在它的物质存在条件在旧社会的胎胞里成熟以前,是绝不会出现的。”这说明
材料1——依据互联网相关材料整理材料2人类社会发展史,就是一部不断战胜各种挑战和困难的历史。新冠肺炎疫情全球大流行
在“五位—体”总体布局中,生态文明建设是其中一位;在新时代坚持和发展中国特色社会主义基本方略中,坚持人与自然和谐共生是其中一条基本方略;在新发展理念中,绿色是其中一大理念;在三大攻坚战中,污染防治是其中一大攻坚战。这“四个一”,体现了
根据《中华人民共和国种子法》的相关规定,下列说法错误的是()。
将函数分别展开成正弦级数和余弦级数.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
有一下凸曲线L位于xOy面的上半平面内,L上任一点M处的法线与x轴相交,其交点记为B,如果点M处的曲率半径始终等于线段MB之长,并且L在点(1,1)处的切线与y轴垂直,试求L的方程.
随机试题
设z=f(u,v)有二阶连续偏导数,且f11’’+f22’’=1,则函数f(x2一y2,2xy)在x2+y2=1上满足=_________.
下列税收中,属于从量税的有()。
当天然气溶于石油之后,就会降低石油的相对密度、粘度及表面张力,使石油的()增大。
我国现行税收立法中采用的税率形式有()
为了使滴蜡器有较好的储热功能常将热点定在
微小病变型肾病综合征
A.清热解暑B.祛风除痹C.健脾安神D.通气下乳E.清肺化痰通草的功效是
某甲国公民经常居住地在甲国,在中国收养了长期居住于北京的中国儿童,并将其带回甲国生活。根据中国关于收养关系法律适用的规定,下列哪一选项是正确的?
在为某一期期刊的一个栏目组配稿件时,编辑不必考虑的因素是()。
马克思认为,复杂劳动等于倍加的简单劳动,这主要说明教育具有()。
最新回复
(
0
)