首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
admin
2014-02-06
111
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
一α
3
=(2,0,一5,4)
T
,α
2
+2α
3
=(3,l2,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通解x=
选项
A、
B、
C、
D、
答案
A
解析
由于n一r(A)=4—2=2,故方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除C,D.因为A
(α
2
+2α
3
)=b,A(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)
T
都是方程组Ax=b的解.A和B中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.由于3(α
1
+α
2
一α
3
)一(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
一α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/U7F4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料12021年是中国共产党成立100周年。在这100年里,党走过了不平凡的历程。中华人民共和国成立前夕,毛泽东在一篇文章中指出:“一九一七年的俄国革命唤醒了中国人,中国人学得了一样新的东西,这就是马克思列宁主义。中国
党的十八大以来,我们全面推进中国特色大国外交,形成新的外交布局,为我国发展营造了良好外部条件。新的外交布局的内容是
垄断资本在国内建立了垄断统治后。必然要把其统治势力扩展到国外.建立国际垄断统治。垄断资本在世界范围的扩展,反映了资本主义发展的必然逻辑,也反映了资本主义发展的本质。在垄断资本主义阶段占主导地位的资本输出形式是()
材料1——依据互联网相关材料整理材料2人类社会发展史,就是一部不断战胜各种挑战和困难的历史。新冠肺炎疫情全球大流行
2021年8月26日,第三次全国国土调查主要数据成果公布。数据显示,我国耕地面积()亩。
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
随机试题
简述项目投资的分类。
与硅肺发病关系最密切的细胞是
甲、乙、丙拟共同出资50万元设立一有限公司。公司成立后,在其设置的股东名册中记载了甲乙丙3人的姓名与出资额等事项,但在办理公司登记时遗漏了丙,使得公司登记的文件中股东只有甲乙2人。下列哪一说法是正确的?(2012年卷三第26题)
蒸压灰砂砖适用于:[2014—014]
出口退税的形式包括()。
四川最长、最宽的山系是()。
某学生智商为100表示()。
(2016·江西)关于个体身心发展的动因理论有()
Dogsaresocialanimalsandwithoutpropertraining,theywillbehavelikewildanimals.Theywillspoilyourhouse,destroyyou
Who’sLiMing?
最新回复
(
0
)