首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
admin
2017-11-23
67
问题
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证:
(Ⅰ)f(x)>0(x∈(0,1));
(Ⅱ)
自然数n,存在唯一的x
n
∈(0,1),使得
.
选项
答案
(Ⅰ) 由题设条件及罗尔定理, [*] => f(x)>f(0)=0(0<x≤a, f(x)>f(1)=0(0≤x<1), => f(x)>0(x∈(0,1)). (Ⅱ) 由题设知存在x
M
∈(0,1)使得f(x
M
)=M>0. 先证[*]是f’(x)的某一中间值.因f’(x
M
)=0,由拉格朗日中值定理,存在ξ
n
∈(0,x
M
)使得 [*] 这里f’(x)在[ξ
n
,x
M
]连续,再由连续函数中间值定理=>存在x
n
∈(ξ
n
,x
M
)[*](0,1),使 得 [*] 最后再证唯一性.由f’’(x)<0(x∈(0,1))=>f’(x)在(0,1)单调减少=>在区间(0,1)内 [*] 的点是唯一的,即x
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/U8r4777K
0
考研数学一
相关试题推荐
设
反常积分
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:
经过点A(1,0,0)与点B(0,1,1)的直线绕z轴旋转一周生成的曲面方程是_____________.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设随机变量X~E(λ),令,求P(X+Y=0)及FY(y).
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数绝对收敛.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足;的微分方程及初始条件;
随机试题
咬指甲可能发生()
AsyouarestudentsofEnglish,it’sverypossiblethatyou’llbeinterestedinEngland.That’swherethelanguagewasfirstspo
纤维支气管镜检查的适应证不包括
女,53岁。主诉:牙龈反复肿痛2个月。检查:多数牙的牙龈肥大增生、牙周溢脓,牙齿松动、移位,全身患有高血压、心脏病、神经衰弱此时最应做的检查是
甲市A县的刘某与乙市B区的何某签订了房屋买卖合同,购买何某位于丙市C区的一套房屋。合同约定,因合同履行发生的一切纠纷,应提交设立于甲市的M仲裁委员会进行仲裁。之后,刘某与何某又达成了一个补充协议,约定合同发生纠纷后也可以向乙市B区法院起诉。刘某按约定先行支
背景资料:沿海地区某住宅工程,该工程由4栋地上12层,地下1层,结构形式完全相同的单体组成,其中地下室为整体连接地下室。该工程地下水系发育,地下水对钢筋混凝土结构有侵蚀作用。屋面设计为不上人屋面,炉渣保温后细石混凝土封面找坡,最上层敷设SBS卷材防水层一
看涨期权的买方预期标的资产的价格在期权有效期内将会()。
强化服务的基本要求主要表现在()。
过去三年中,13岁至16岁的年轻人在驾驶或乘坐轻型摩托车中受伤或死亡的人数在增加。对于16岁以下的孩子来说,这些摩托车马力太大,因为即使对这种年龄层中操作最熟练的驾驶者来说,他们也缺乏成熟的判断能力。可见,以上文字的作者最可能赞成哪一项禁止的法律?
简述附条件民事法律行为中条件的概念和法律特点。
最新回复
(
0
)