首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证: (Ⅰ)f(x)>0(x∈(0,1)); (Ⅱ)自然数n,存在唯一的xn∈(0,1),使得.
admin
2017-11-23
59
问题
若函数f(c)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)<0,且f(x)在[0,1]上的最大值为M.求证:
(Ⅰ)f(x)>0(x∈(0,1));
(Ⅱ)
自然数n,存在唯一的x
n
∈(0,1),使得
.
选项
答案
(Ⅰ) 由题设条件及罗尔定理, [*] => f(x)>f(0)=0(0<x≤a, f(x)>f(1)=0(0≤x<1), => f(x)>0(x∈(0,1)). (Ⅱ) 由题设知存在x
M
∈(0,1)使得f(x
M
)=M>0. 先证[*]是f’(x)的某一中间值.因f’(x
M
)=0,由拉格朗日中值定理,存在ξ
n
∈(0,x
M
)使得 [*] 这里f’(x)在[ξ
n
,x
M
]连续,再由连续函数中间值定理=>存在x
n
∈(ξ
n
,x
M
)[*](0,1),使 得 [*] 最后再证唯一性.由f’’(x)<0(x∈(0,1))=>f’(x)在(0,1)单调减少=>在区间(0,1)内 [*] 的点是唯一的,即x
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/U8r4777K
0
考研数学一
相关试题推荐
在第一象限的椭圆,使过该点的法线与原点的距离最大.
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为__________.
计算曲线积分其中L圆周(x一1)2+y2=2,其方向为逆时针方向.
设由平面图形a≤x≤b,0≤y≤f(x)绕x轴旋转所成旋转体Ω的密度为1,则该旋转体Ω对x轴的转动惯量为__________.
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).判断U,V是否相互独立?
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
求y’’一y=e|x|的通解.
设f′(1)=a,则数列极限I==________.
(1)设f(x)是[0,+∞)上的单调减少函数,证明:对任何满足λ+μ=1的正数λ,μ及x∈[0,+∞)有下列不等式成立:f(x)≤λf(λx)+μf(μx);(2)设是(0,+∞)内的单调减少函数,证明:对任何满足λ+μ=1的正数λ,μ及x
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)