首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2018-04-14
75
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)内具有二阶导数且F(a)=F(b)=0。 若f(x),g(x)在(a,b)内同一点c取得最大值,则f(c)=g(c)[*]F(c)=0,于是由罗尔定理可得,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再利用罗尔定理,可得存在ξ∈(ξ
1
,ξ
2
),使得F"(ξ)=0,即f"(ξ)=g"(ξ)。 若f(x),g(x)在(a,b)内不同点c
1
,c
2
取得最大值,则f(c
1
)=g(c
2
)=M,于是 F(c
1
)=f(c
1
)-g(c
1
)>0,F(c
2
)=f(c
2
)-g(c
2
)<0, 于是由零点定理可得,存在c
3
∈(c
1
,c
2
),使得F(c
3
)=0,又由罗尔定理可得,存在ξ
1
∈(a,c
3
),ξ
2
∈(c
3
,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再一次利用罗尔定理可得,存在ξ∈(ξ
1
,ξ
2
),使得F"(ξ)=0,即f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/URk4777K
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
[*]
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
求微分方程y’=y(1-x)/x的通解。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
随机试题
与轴性远视无关的是
在心肌梗死时显著增高的LD同工酶是
关于下颌切牙拔除描述哪项是正确的
A.责任感B.同情感C.安全感D.自豪感E.依赖感上列各项中,能反映医务人员自觉道德意识的是对患者的
男,32岁,右腰部外伤伴血尿3小时,经保守治疗后血尿消失,但血压持续下降达80/45mmHg,血红蛋白及血细胞比容继续降低,右腰部出现肿块,下一步最重要的治疗措施是
业主方把建设工程项目的()进行综合委托的模式可称为建设工程项目总承包或工程总承包。
当一个集团客户授信需求超过一家银行资本余额的15%以上时,应采取风险分散措施。()
甲向乙借款4万元作为出资与他人合伙设立一家食品厂,企业性质为普通合伙企业。借款到期后,乙要求甲偿还借款,甲个人财产不足以清偿。下列有关偿还借款的方式中,正确的有()。
将下列句子组成一段逻辑严谨、语言流畅的文字,排列顺序最合理的是()。①来自实验室和现场观察的结果都表明,饮酒有利于缓解社会约束,使人们比平日更容易放松警惕。②欧阳修说:“醉翁之意不在酒。”③社交场上的活跃分子心里有数,酒是手段,而非目的。
定义无符号整数类为UInt,下面可以作为类UInt实例化值的是
最新回复
(
0
)