首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
admin
2018-01-26
46
问题
讨论a,b为何值时,方程组
无解?有解?有解时写出全部解。
选项
答案
用初等行变换把增广矩阵化为行阶梯形矩阵,即 [*] 可见,当a≠1时,R(A)≠R(A,b),方程组无解。 当a=1且b≠-1时,R(A)=R(A,b)=3,方程组有唯一解,由 [*] 得唯一解为x
1
=3,x
2
=1,x
3
=0。 当a=1且b=-1时,R(A)=R(A,b)=2<3,方程组有无穷多解。由 [*] 得同解方程组为 [*] 选x
3
为自由变量,对应的齐次线性方程组的基础解系为ξ=(-1,1,1)
T
,方程组的一个特解为η=(3,1,0)
T
,所以方程组的通解为 x=η+kξ,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/USr4777K
0
考研数学一
相关试题推荐
设f(x)=,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为__________.
求微分方程的通解.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ;(2)Anβ.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角阵,说明理由.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
已知线性方程组a,b为何值时,方程组有解;
随机试题
一所“名声不大好”的中学,纪律差、成绩差……长时间来也没能改变“落后”的面貌。直到李校长调来,才发生了变化。李校长从抓“德育”入手,成立了“德育办公室”,制订了德育工作计划,对学生日常行为和品德表现进行评估、评价,以品德评价和评比带动纪律、学习,以“先立德
周围型肺癌常见于
下列关于腹膜透析的护理中不妥的是
某水利工程施工项目,项目法人依据《水利水电土建工程施工合同条件》(GF—2000—0208),与施工单位签订了施工合同。招标文件中的工期为270天,协议书中的工期为242天。施工中发生了下列事件。事件1:施工单位在按监理单位签发的设计文件组
在DOS系统中,可以唯一确定一个文件的组成要素包括()。
企业在固定资产清理过程中,发生的清理费用,应贷记“固定资产清理”。()
王某婚后一年因意外去世,其遗产的第一顺序继承人不包括()。
企业会议培训效果评估方法包括()。
《中华人民共和国教育法》的立法宗旨是发展教育事业,提高全民族的素质,()。
交子,是世界最早使用的钱币.发行于北宋前期的成都。()
最新回复
(
0
)