首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
讨论a,b为何值时,方程组 无解?有解?有解时写出全部解。
admin
2018-01-26
34
问题
讨论a,b为何值时,方程组
无解?有解?有解时写出全部解。
选项
答案
用初等行变换把增广矩阵化为行阶梯形矩阵,即 [*] 可见,当a≠1时,R(A)≠R(A,b),方程组无解。 当a=1且b≠-1时,R(A)=R(A,b)=3,方程组有唯一解,由 [*] 得唯一解为x
1
=3,x
2
=1,x
3
=0。 当a=1且b=-1时,R(A)=R(A,b)=2<3,方程组有无穷多解。由 [*] 得同解方程组为 [*] 选x
3
为自由变量,对应的齐次线性方程组的基础解系为ξ=(-1,1,1)
T
,方程组的一个特解为η=(3,1,0)
T
,所以方程组的通解为 x=η+kξ,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/USr4777K
0
考研数学一
相关试题推荐
当x→0时,x—sinxcos2x~cxk,则c=__________,k=__________.
一个罐子里装有黑球和白球,黑、白球数之比为a:1.现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn.基于此,求未知参数a的矩估计和最大似然估计.
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y].
证明:r(A+B)≤r(A)+r(B).
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
随机试题
A、口服氯化钾B、苯妥英钠C、利多卡因D、阿托品E、地高辛抗体预防强心苷中毒
Tietze病的好发部位是
土工织物垂直渗透性能试验中,调整水流,使水头差达到()±(),记录此值,精确到1mm。
A企业为矿山企业,地下金属矿山采用竖井、斜井、斜坡道联合开拓方式和下行分层胶结充填采矿方法。2012年5月9日8时,司机甲和司机乙开始在井下1150工作面进行铲装作业。9时,甲使用的铲装车出现故障,无法正常作业,于是来到休息室休息。10时30分,乙完成自
下列各项属于“其他应交款”科目核算的范畴的有()。
对于资产负债表日后事项中的非调整事项,应在会计报表附注中披露的有()。
单务合同中不存在同时履行抗辩权的问题。()
上市公司甲公司是ABC会计师事务所的常年审计客户,主要从事汽车零部件的研发、制造和销售,A注册会计师负责审计甲公司2018年度财务报表,确定财务报表整体的重要性为600万元,实际执行的重要性为450万元,明显微小错报的临界值为30万元。 资料一: A注
下列关于中国工会的说法,不正确的是()。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.仔细阅读给定资料,按照后面提出的“作答要求”作答。二、给定资料1.市场经济的发展为学术研究提供了良好的物质环境,但同时,
最新回复
(
0
)