首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. 设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. 设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2015-08-17
87
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
设C=E—AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E—AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
,故若要求C
T
C=E-BA
T
一AB
T
+BB
T
,则BA
T
AB
T
-BB
T
=O,B(A
T
A一1)B
T
=O,即(A
T
A一1)BB
T
=O.因为B≠O,所以BB
T
≠O.故C
T
C=E-BA
T
一BB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/w1w4777K
0
考研数学一
相关试题推荐
确定常数a,c,使得,其中c为非零常数.
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,C]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
求A=的特征值和特征向量.
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
证明:方程|x|1/4+|x|1/2-1/2cosx=0在(-∞,+∞)内仅有两个实根.
随机试题
男性,50岁,一小时前剧烈咳嗽后突发上腹痛,腹痛蔓延至全腹,伴恶心,呕吐。既往有慢性肝炎15年。查体:面色苍白,巩膜不黄,脉搏110次/分,血压13/9.1kPa(95/68mmHg),腹胀,全腹压痛,轻度反跳痛,肝肋下2cm,剑下6cm,轻触痛,脾未触及
A.鲜红色B.黑色或柏油色C.绿色D.白色或灰白色E.暗红色服用铋剂时的粪便颜色为
《城市房地产管理法》规定:房地产价格评估应当遵循的原则为()。
(2006年)凸轮机构不适合在以下哪种场合工作?()
下列各项中,应在“应付职工薪酬”科目核算的有()。
甲公司的职工张某和李某利用业余时间合作开发完成一项发明,如果双方事先没有约定,下列说法小正确的有()。
在确定增值税销售额时,下列价外费用应属于销售额,计征增值税的有( )。
下列哪项行政法义务可以适用行政强制执行中的代履行?()
给定材料材料1:人最需要的是灵魂,城市也是如此。灵魂的塑造,说到底是一种精神的塑造。因此,城市精神,就是城市灵魂的呈现。它所书写的,应该是城市的底蕴、城市的韵味、城市的品位,也是一个城市对于自己所肩负的历史使命的高度自觉。世界
根据以下资料,回答86-90题2009年前三个季度,我国规模以上电子信息制造业扭转了上半年下滑的势头,但比去年同期增速下降10个百分点以上。重点产品增长面逐步扩大。9月,重点监测的27个产品中,14个产品产量出现正增长,比上半年多了3个产品;其中计算机、
最新回复
(
0
)