首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
admin
2016-10-27
79
问题
已知α
1
,α
2
,α
3
是齐次线性方程组Ax=0的一个基础解系,证明α
1
+α
2
,α
2
+α
3
,α
3
+α
1
也是该方程组的一个基础解系.
选项
答案
由A(α
1
+α
2
)=Aα
1
+Aα
2
=0+0=0知,α
1
+α
2
是齐次方程组Ax=0的解.类似可知α
2
+α
3
,α
3
+α
1
也是Ax=0的解. 若k
1
(α
1
+α
2
)+k
2
(α
2
+α
3
)+k
3
(α
3
+α
1
)=0,即 (k
1
+k
3
)α
1
+(k
1
+k
2
)α
2
+(k
2
+k
3
)α
3
=0, 因为α
1
,α
2
,α
3
是基础解系,它们是线性无关的,故 [*] 由于此方程组系数行列式D=[*]=2≠0,故必有k
1
=k
2
=k
3
=0,所以α
1
+α
2
,α
2
+α
3
, α
3
+α
1
线性无关. 根据题设,Ax=0的基础解系含有3个线性无关的向量,所以α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是方程组Ax=0的基础解系.
解析
按基础解系的定义,要证三个方面:
①α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是解;
②它们线性无关;
③向量个数等于n一r(A).
转载请注明原文地址:https://kaotiyun.com/show/UTu4777K
0
考研数学一
相关试题推荐
[*]
64/3
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
A、发散B、条件收敛C、绝对收敛D、敛散性不确定C
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
设f(x,y)是连续函数,则
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
随机试题
设A为m×n阶矩阵,且r(A)=m<n,则().
在中国特色社会主义进程中,全面发展表明()。
A.圆孔、卵圆孔B.视神经管C.颈内动脉管和半月节D.垂体、蝶鞍、蝶窦E.颞叶海绵窦下壁相邻
异位ACTH综合征分哪两型
急性呼吸窘迫综合征病理生理改变叙述错误的是
A.白喉杆菌B.结核分枝杆菌C.霍乱弧菌D.肺炎链球菌E.炭疽芽胞杆菌抗酸染色后细菌呈细长略带弯曲红色杆菌是
目前,流行病学研究的疾病范围是
小康周末在电器店购买了宏达厂生产的电冰箱,回去路上见一饭店门口张贴订餐二维码,遂扫码入群订购了套餐一份,随餐赠送一杯饭店自制柠檬茶,小康收到快餐后见送餐小票上注明“柠檬茶保质期三天,可常温存放。”当天小康使用该冰箱冷冻柠檬茶,第二天取出饮用时,发现冰箱已不
对一组对象的属性和行为特征的抽象描述,或者说是具有共同属性、共同操作性质的对象的集合被称之为【】。
Livinginaforeigncountryisfun,butitisn’talwayseasy.Therearemanydifferencesbetweenculturesandalthoughsomeof
最新回复
(
0
)