首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2016-06-27
76
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则{u
n
}必收敛.
B、若u
1
>u
2
,则{u
n
}必发散.
C、若u
1
<u
2
,则{u
n
}必收敛.
D、若u
1
<u
2
,则{u
n
}必发散.
答案
D
解析
本题依据函数f(x)的性质选取特殊的函数数列,判断数列{u
n
=f(n)}的敛散性.
取f(x)=x
2
,f”(x)=2>0,u
1
=1<4=u
2
,而f(n)=n
2
发散,则可排除C;故选D.
事实上,若u
1
<u
2
,则
=f’(ξ
1
)>0.而对任意x∈(ξ
1
,+∞),由f”(x)>0,所以f’(x)>f’(ξ
1
)>ξ
1
∈(1,2)>0,对任意ξ
2
∈(ξ
1
,+∞),f(x)=f(ξ
1
)+f’(ξ
2
)(x一ξ
1
)→+∞(x→+∞).
故选D.
转载请注明原文地址:https://kaotiyun.com/show/UUT4777K
0
考研数学三
相关试题推荐
中国研究人员日前在美国《分子植物》杂志上报告,他们破译了世界三大饮料植物之一茶树的基因组。报告提出,高含量的茶多酚和咖啡因决定了山茶属植物是否适合制茶。该结论回答了为什么只有茶组植物的叶子适合制茶,而茶花、油茶和金花茶等非茶组植物的叶片不适合制茶这一长期悬
上层建筑是由意识形态和政治法律制度及设施、政治组织等两部分构成的,其中社会意识形态是指()。
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
设f(x)在区间[-a,a](a>0)上有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使a3f"(η)=[*]
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)().
随机试题
下列关于Word2010文件的保存说法中,错误的是()。
恶热、汗出、口渴、疲乏、尿黄,舌红、苔黄,脉虚数,属于()
升药的功效是
塔吊安装方案应由()单位编写。
下列有关态度与行为的关系描述不正确的是()。
不同法的形式具有不同的效力等级,下列各项中,效力低于地方性法规的是()。
某商品分别在购物网站和实体店进行销售,利润率都是100%。为了促销,网站推出该商品买二赠一活动,实体店在提高一定价钱后以六折销售,结果两者利润仍然相同。问实体店提高的价钱占该商品原来售价的比例是多少?
学与教相互作用的过程是由__________、____________和评价/反思过程三种活动过程交织在一起的。
某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?
以下哪项列出的四名队员可以共同参加比赛?()如果H不参加比赛,则参加比赛的队员必然包括以下哪两名?()
最新回复
(
0
)