首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[1,2]上可导,证明:存在ξ∈(1,2),使 f(2)一2f(1)=ξf’(ξ)一f(ξ).
设f(x)在闭区间[1,2]上可导,证明:存在ξ∈(1,2),使 f(2)一2f(1)=ξf’(ξ)一f(ξ).
admin
2018-08-22
20
问题
设f(x)在闭区间[1,2]上可导,证明:存在ξ∈(1,2),使
f(2)一2f(1)=ξf’(ξ)一f(ξ).
选项
答案
把所证等式中的ξ改为x,得 xf’(x)一f(x)=f(2)一2f(1), 两边同时除以x
2
,得[*]即 [*] 令[*]F(x)在[1,2]上连续,(1,2)内可导,且 F(2)=F(1)=f(2)一f(1). 由罗尔定理知,存在ξ∈(1,2),使F’(ξ)=0,即 f(2)一2f(1)=ξf’(ξ)一f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/UUj4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
设f(x)=试确定常数a,b,c,使f(x)在x=0处连续且可导.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数,若f(a)<0,则在区间内方程f(x)=0的实根个数为()
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是m×n矩阵,B是n×m矩阵,则()
[*]令x=rsinθ,y=rcosθ,则原式=∫01dr∫02π(r2sin2θ+r2cos2θ).rdθ=∫01r3dr∫02πdθ=
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:(1)若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)一f’(x0)(x—x0),当且仅当x=x0时等号成立;(2)若x1,x2,…,xn∈(a,b),且xi<xi
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)<n一1时,r(A*)=0.
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
随机试题
如何利用因特网对公众的反应进行有效的监控?
Idon’tmind______thedecisionaslongasitisnottoolate.
颈椎牵引重量多少时,椎间盘内部压力几手测不到
营养不良患儿皮下脂肪消退的顺序是
配套设施根据费用是否能计入开发项目分为()。
一、背景某安装公司分包了一冶炼厂部分机械设备安装,其中包括8台空气压缩机,10台离心式风机,3台50t桥式起重机,3台水泵,10台胶带输机,10台螺旋输机,10台斗式提升机和两台球磨机的安装,其中风机、胶带及螺旋输送机、提升机、球磨机属于连接工艺
甲公司欠乙商场货款5万元,乙商场欠甲公司货款2万元。现甲公司欠款已到期,乙商场欠款已超过诉讼时效,甲公司拟主张抵销。根据合同法律制度的规定,下列表述中,正确的是( )。
企业对外投资期间,投资资产的成本在计算企业所得税应纳税所得额时可以扣除。()
根据下列资料,回答下列问题。2015年,某市消费品市场保持平稳增长态势,全年共实现社会消费品零售额268.9亿元,同比增长12.4%。高出全省平均增速4.7个百分点,增速和总量分别居全省十六个地市第五和第八位。2015年该市限额以上零售业零售总额排
简述中世纪世俗封建主教育的情况。
最新回复
(
0
)