首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~U(1,θ),参数θ>1未知,X1,…,Xn是来自总体X的简单随机样本。 (Ⅰ)求θ的矩估计量和极大似然估计量; (Ⅱ)求上述两个估计量的数学期望。
设总体X~U(1,θ),参数θ>1未知,X1,…,Xn是来自总体X的简单随机样本。 (Ⅰ)求θ的矩估计量和极大似然估计量; (Ⅱ)求上述两个估计量的数学期望。
admin
2017-11-30
78
问题
设总体X~U(1,θ),参数θ>1未知,X
1
,…,X
n
是来自总体X的简单随机样本。
(Ⅰ)求θ的矩估计量和极大似然估计量;
(Ⅱ)求上述两个估计量的数学期望。
选项
答案
总体X~U(1,θ),其概率密度为 [*] (Ⅰ)由[*]=E(X)=[*],解得θ=2[*]-1,故θ的矩估计量为[*]-1; 似然函数 [*] L(θ)递减,又X
1
,…,X
n
∈(1,θ),故θ的极大似然估计量为[*]=max{X
1
,…,X
n
}。 (Ⅱ)[*] 而[*]=max{X
1
,…,X
n
}的分布函数 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ufr4777K
0
考研数学一
相关试题推荐
如图1.3—1,设曲线方程为梯形QABC的面积为D,曲边梯形OBC的面积为D1,点A的坐标为(a,0),a>0,证明:
计算
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
下列二次型中,正定的二次型是()。
在椭圆x2+=1的第一象限内求一点M,使得原点到椭圆在M点处法线的距离最远,并求出最远距离.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:按从低阶到高阶的顺序排列.
函数f(x)=sinx在[0,π]上的平均值为______.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
设α、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)<2.
随机试题
在100~150℃测定粘度时,各次流动时间与其算术平均值的差数不应超过其算术平均值的±1%。()
男性,40岁,刨伤后脾破裂大出血,继而尿量减少如果检查结果为尿沉渣阴性,血尿素30mmol/L,血肌酐500μmol/L,血红蛋白50g/L,尿渗透压320mO5m/L,可能的诊断是
试问,计算吊车梁疲劳时,作用在跨间内的下列何种吊车荷载取值是正确的?
衡量中心地等级的指标称()。
用算法交易的终极目标是()。
中国证监会自受理股票发行申请文件到作出决定的期限为( )。
李老师在幼儿园内开了一个超市,幼儿张某喝了该超市所售卖的过期的矿泉水,腹泻不止。在此事件中应当承担责任的是()。
设χ=χ(t)由sint-∫tχ(t)φ(u)du=0确定,φ(0)=φ′(0)=1且φ(u)>0为可导函数,求χ〞(0).
如图所示是大型企业网核心层设计的两种方案,关于两种方案技术特点的描述中,错误的是()。
--Neverthoughttoseeyouhere.
最新回复
(
0
)