首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1,又x>x0时,ψ(n)(x)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1,又x>x0时,ψ(n)(x)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x).
admin
2015-07-04
31
问题
若函数φ(x)及ψ(x)是n阶可微的,且φ
(k)
(x
0
)=ψ
(k)
(x
0
),k=0,1,2,…,n一1,又x>x
0
时,ψ
(n)
(x)>ψ
(n)
(x).试证:当x>x
0
时,φ(x)>ψ(x).
选项
答案
令u
(n-1)
(x)=φ
(n-1)
(x)一ψ
(n-1)
(x).在[x
0
,x]上用微分中值定理得u
(n-1)
(x)-u
)n-1
(x
0
)=u
(n)
(ξ.(x-x
0
),x
0
<ξ<x.又由u
(n)
(ξ)>0可知u
(n-1)
(x)一u
(n-1)
(x
0
)>0,且u
(n-1)
(x
0
)=0,所以u
(n-1)
(x)>0,即当x>x
0
时,φ
(n-1)
(x)>ψ
(n-1)
(x).同理u
(n-2)
(x)=φ
(n-2)
(x)一ψ
(n-2)
(x)>0.归纳有u
(n-3)
(x)>0,…,u’(x)>0,u(x)>0.于是,当x>x
0
时,φ(x)>ψ(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/Vow4777K
0
考研数学一
相关试题推荐
设f(x)在[0,π/2]上连续,在(0,π/2)内可导,证明:存在ξ,η∈(0,π/2),使得π/2f’(ξ)=f’(η)/sinη.
设z=f(x2+y2,y/x),且f(u,v)具有二阶连续的偏导数,则
求函数g(x,y,z)=(2x2+y2-4xy-4yz)/(x2+y2+z2)(x2+y2+z2≠0)的最大值,并求出一个最大值点.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点。写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式。
设积分∫1+∞xP(e-cos1/x-e-1)dx收敛,则P的取值范围为()
设L为取正向的圆周x2+y2=1,则∮L(ey+2y)dx-(cosy-xey)dy=________.
设则
(2003年试题,一)设则a2=____________.
设f(x)是三次多项式,且有
随机试题
关于反竞争性抑制剂的正确阐述是
纵隔疾病首选的影像学检查方法是
某幢写字楼,土堆面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日——2035年10月1日,土地使用权出让合同中未约定到期后不可续期。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重
有一列500m火车正在运行。若距铁路中心线600m处测得声压级为70dB,距铁路中心线1200m处有居民楼,则该居民楼的声压级是()dB。
()是确定利害关系者对于交流和沟通的要求——谁需要信息,需要什么样的信息,何时需要信息以及应怎样将信息传递到他们手中。
沥青路面检测中除平整度、纵断高程、厚度外,还应检测()。
契约型基金筹集的资金属于()。
以下()策略不是按营销渠道模式分类。
简述幼儿口语表达能力的发展特点。(山西)
AloeVitaminHandCreamArichyetlightweightnon-greasytexturethatactslikeagloveprovidingprotectionagainstharmfu
最新回复
(
0
)