首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 设A=,E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=_________.
[2000年] 设A=,E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=_________.
admin
2019-05-10
83
问题
[2000年] 设A=
,E为四阶单位矩阵,且B=(E+A)
-1
(E—A),则(E+B)
-1
=_________.
选项
答案
运用“和化积”形式或提取公因式的方法化为乘积形式,先化简,后计算. 解一 在所给矩阵方程两边左乘E+A得到 (E+A)B=E—A, 即 AB+A+B—E=0. 则有a=b=1,c=一1.由命题2.2.1.6即得(A+E)(B+E)=2E,故 (B+E)
-1
=[*] 解二 用“和化积”的方法求之.先将E+B化成乘积形式: E+B=(E+A)
-1
(E—A)+E=(E+A)
-1
(E—A)+(E+A)
-1
(E+A) =(E+A)
-1
[E—A+E+A]=2E(E+A)
-1
=2(E+A)
-1
. 故 (E+B)
-1
[2(E+A)
-1
]
-1
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/UjV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
随机试题
在二氧化碳气体保护焊使用焊丝的化学成分中,对飞溅影响最大的元素是________。
患者,男性,35岁。突发上腹部疼痛,伴恶心、呕吐。查尿常规:红细胞满视野,白细胞6~13个/HP,血常规正常,考虑为左输尿管结石。目前最恰当的急救处理措施是
既是食品又是药品品种的是资源严重减少的主要常用野生药材物种的是
从事生产经营的纳税人应自取得工商营业执照之日起()内向税务机关申请办理税务登记。
通常情况下,先以电子数据报关单形式向海关申报,后提交纸质报关单并随附有关单证提交海关。( )
法人所具有的参加民事法律关系,享受民事权利和承担民事义务的资格称为:
甲、乙两人互发E-mail协商洽谈合同,4月30日甲称:“我有笔记本电脑一台,配置为……九成新,8000元欲出手。”5月1日乙回电称:“东西不错,7800元可要。”甲于5月2日回复:“可以,5月7日到我这儿来。”乙于5月4日回电:“同意。”甲于当日收到。上
某大学通过选取1900年至2000年出生且在该大学医学中心就诊的患者信息,对他们的医疗记录进行分析研究,发现出生月份和疾病发生率之间有某种相关性,出生月份决定了一个人是否容易生病。在所有的月份中,7月和10月出生的人得哮喘的概率最大,3月出生的人心脏最容易
Aborroweris______.
December10th,2010DearSirs,Iknowthatyourcompanyhasareputation(声誉)forqualityproductsandfairnesstowardit
最新回复
(
0
)