首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
admin
2017-01-14
65
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-
,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=[*],则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] (Ⅱ)令F(x)=xf(x)-[*]有 F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,因此(Ⅰ)中的点x
0
是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/Uxu4777K
0
考研数学一
相关试题推荐
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
设矩阵且|A|=﹣1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(﹣1,﹣1,1)T,求a,b,c及λo的值.
函数f(x)=展开成x的幂级数为___________.
设幂级数的收敛半径分别为,则幂级数的收敛半径为().
随机试题
方志时期
冰心1921年所参加的文学社团是_________。冰心走上文坛是以_________小说起步的。冰心擅长写散文,其文体自成一家,被读者誉为“_________”。
该患者最可能诊断是目前对该患者治疗不恰当的是
根据《票据法》规定,允许背书转让的票据是()。
通过国内销售价格、向第三国出口的价格、结构价格三种方法确定正常价值仅适用于市场经济国家。()
家庭风险管理规划主要是指()。
边际消费倾向递减规律是在()中提出来的。
税收的基本特征有()。
在程序设计阶段应该采取()和逐步求精的方法,把一个模块的功能逐步分解,细化为一系列具体的步骤,进而用某种程序设计语言写成程序。
Ournationmustdefendthesanctityofmarriage.
最新回复
(
0
)