首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
设y=f(x)是区间[0,1]上的任一非负连续函数。 (Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
admin
2017-01-14
40
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
(Ⅰ)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-
,证明(Ⅰ)中的x
0
是唯一的。
选项
答案
(Ⅰ)本题可转化为证明x
0
f(x
0
)=[*],则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] (Ⅱ)令F(x)=xf(x)-[*]有 F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,因此(Ⅰ)中的点x
0
是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/Uxu4777K
0
考研数学一
相关试题推荐
π-2
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
设随机变量X和Y独立同分布,记U=x-Y,V=X+Y,则随机变量U和V必然().
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
随机试题
设I=∫01dy∫02yf(x,y)dx+∫13dy∫03-yf(x,y)dx,交换积分次序后I=()。
男性,30岁。2天来咽干。伴喷嚏、鼻塞、流清水样鼻涕,诊断为普通感冒。以下不是普通感冒主要特点的是
骨折急救的主要方法是
下列不属于整理资料的步骤是
患者近来尿少,粪便反复带有鲜血。查体:面部有蜘蛛痣,左肋缘下触及脾脏,腹部叩诊出现移动性浊音。应首先考虑的是
对羟基桂皮酸的结构为阿魏酸的结构为
材料1 丰收的季节,陕北高原到处是红彤彤的苹果。63岁的赵家村村民老赵看着果实,满眼的喜悦。借助改革开放的东风,四十年来他用劳动创造了财富,改变了全家的生活状况,也见证了他们村乃至黄土高原翻天覆地的变化。 1987年,来自远方的“包产到户”消息传遍
人与自然相处时应遵循的基本原则是()
Whendoessleepwalkingusuallyoccur?Whydidheleaveher?
Whatarethedifferenttypesofmoney?
最新回复
(
0
)