首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
admin
2021-02-25
88
问题
设y
1
=e
-x
,y
2
=2xe
-x
,y
3
=3e
x
是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
选项
答案
由y
1
=e
-x
,y
2
=2xe
-x
是齐次线性方程的解,知r=-1是特征方程二重根. 由y
3
=3e
x
是解,知r=1为特征方程的单根,从而特征方程为(r+1)
2
(r-1)=0,即r
3
+r
2
-r-1=0,故所求微分方程的形式为y“’+y“-y‘-y=0.
解析
常系数线性微分方程的反问题.根据所给解的形式确定出特征方程的根,由特征方程得到齐次方程的形式.
转载请注明原文地址:https://kaotiyun.com/show/kO84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
(2009年试题,18)设非负数函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
已知函数f(x)=f(x)。若x→0时,f(x)-a与xk是同阶无穷小量,求常数k的值。
在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0).(1)求l的方程;(2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.
微分方程=0的通解是____________.
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
如图1-3-1,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
阅读下列短文,回答有关问题。谈静朱光潜
乙脑是人畜共患的自然疫源性传染病。
A.干姜茯苓B.生姜茯苓C.半夏当归D.干姜半夏E.枳实厚朴
某工程投资中,设备、建筑安装和工程建设其他费用分别为600万元、1000万元和400万元,基本预备费率为10%。投资建设期二年,各年投资额相等。预计年均投资价格上涨5%,则该工程的涨价预备费为()万元。
将饰面板事先加工成企口暗缝,安装时将T形龙骨两肋插入企口缝内的明龙骨吊顶饰面板安装方法是()。
以下选项不属于广义国际物流的是()。
下列属于非预算控制法的是()。
如今,每个人都说自己太忙了,但是,这些繁忙好像并不能促进事情的完成。现在,没有完成的工作、没有回的电话以及错过的约会的数量与这些繁忙发生之前一样的多。因此,人们一定没有他们声称的那样忙。下面哪一项,如果正确,最能严重地削弱上述论述中的结论?
积分
Whenpricesarelowpeoplewillbuymore,andwhenpricesarehightheywillbuyless.Everyshopkeeperknowsthis.Butatthes
最新回复
(
0
)