首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设平均收益函数和总成本函数分别为 AR=a—bQ,C=Q3一7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性Ep=一时总利润最大.求总利润最大时的产量,并确定a,b的值.
设平均收益函数和总成本函数分别为 AR=a—bQ,C=Q3一7Q2+100Q+50, 其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性Ep=一时总利润最大.求总利润最大时的产量,并确定a,b的值.
admin
2017-10-23
86
问题
设平均收益函数和总成本函数分别为
AR=a—bQ,C=
Q
3
一7Q
2
+100Q+50,
其中常数a>0,b>0待定.已知当边际收益MR=67,且需求价格弹性E
p
=一
时总利润最大.求总利润最大时的产量,并确定a,b的值.
选项
答案
总利润函数 L(Q)=R一C=Q.AR—C=一[*]Q
3
+(7一b)Q
2
+(a一100)Q一50,从而使总利润最大的产量Q及相应的a,b应满足L’(Q)=0,MR=67及E
p
=一[*],即 [*] 由此得到两组可能的解:a=111,b=[*],Q=3与a=111,b=2,Q=11. 把第一组数据中的a,b代入得总利润函数 L=一[*]Q
2
+11Q一50, 虽然L’(3)=0,L"(3)<0,即L(3)确实是L(x)的最大值,但L(3)<0,不符合实际,故应舍去. 把第二组数据中的a,b代入得总利润函数 L=一[*]Q
3
+5Q
2
+11Q一50, 也有L’(11)=0,L"(11)<0,即L(11)=232[*]是L(x)的最大值,故a=111,b=2是所求常数的值,使利润最大的产量Q=11.
解析
平均收益函数AR=a一bQ其实就是价格P与销售量Q的关系式,由此可得总收益函数
R=Q.AR=aQ一bQ
2
,
需求函数(它是P=a一bQ的反函数)Q=
(a一P),进而可得需求价格弹性
利用以上结果不难解决本题.
转载请注明原文地址:https://kaotiyun.com/show/VEX4777K
0
考研数学三
相关试题推荐
计算
[*]故u仅是r的函数,即u不含θ与φ.
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X~E(λ),令Y=,求P(X+Y=0)及FY(y).
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设X服从参数为λ的指数分布,对X作三次独立重复观察,至少有一次观测值大于2的概率为,则λ=________.
设(X,Y)的分布函数为:求:(1)常数A,B,C;(2)(X,Y)的密度;(3)关于X、Y的边缘密度。
随机试题
下列关于教育行政法律关系的叙述,不正确的是()
若一个关系为R(学号,姓名,性别,年龄),通常以_____________作为该关系的主键。
关于芬太尼的描述中,下列哪项错误
发明或适用新型专利权的保护范围以( )。
根据《人民法院工作人员处分条例》,下列哪些行为属于要给予开除处分的?()
为提高公共建筑的经济性,设计中要注重考虑增加建筑的()。
下列2013年新成立的企业,其企业所得税应该向国税局缴纳企业所得税的有()。
1952年,党在全国范围内开展了大规模的反对贪污、反对浪费、反对官僚主义的“三反”运动。这一历史事件的发生及其进程表明()。
按覆盖的地理范围进行分类,计算机网络可以分为:局域网、【】和广域网。
Itmaybeoneoftheworld’sgreatshoppingdestinations,butLondon’sRegentStreetisfailingthefashiontest,accordingtot
最新回复
(
0
)