首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
admin
2019-03-11
71
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xfˊˊ(x)+3x[fˊ(x)]
2
=1-e
-x
,且fˊ(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值.正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=fˊ(ξ)(x-a),
则
由fˊˊ(x)>0知,fˊ(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有fˊ(x)>fˊ(ξ),从而由上式得Fˊ(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因fˊ(x
0
)=0,故所给定的方程为fˊˊ(x
0
)=
,显然,不论x
0
>0,还是x
0
<0,都有fˊˊ(x
0
)>0,于是由fˊ(x
0
)=0与fˊˊ(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
yˊ-2yyˊ+xyˊ+y-x=0, ①
再求导,得
(3y
2
-2y+x)yˊˊ+(6y-2)(yˊ)
2
+2yˊ=1. ②
令yˊ=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得yˊˊ|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得
f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/VPP4777K
0
考研数学三
相关试题推荐
A=,且n≥2,则An一2An—1=__________.
10个同规格的零件中混入3个次品,现在进行逐个检查,则查完5个零件时正好查出3个次品的概率为________。
设随机变量X的概率密度为fX(x)=(一∞<x<+∞),Y=X2的概率密度为______。
函数f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是_______.
求幂级数的和函数.
利用变换y=f(ex)求微分方程y"一(2ex+1)y’+e2xy=e3x的通解.
已知曲线L的方程为1)讨论L的凹凸性;2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线方程;3)求此切线与L(对应x≤x0的部分)及x轴所围成平面图形的面积.
设f(x)在区间[a,b]上可导,且满足ebf(b)=exf(x)dx,求证:至少存在一点ξ∈(a,b)使得f(ξ)=一f’(ξ).
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
随机试题
由于CO2气体不是易燃气体,故应使CO2气瓶()。
矿化度是指钻井液中所含有()的质量浓度。
男性,35岁。发热、双颈部淋巴结进行性肿大1个月。查体:双侧颈部可触及数个1.5cm×1.5cm左右大的无触痛淋巴结,肝、脾肋下未触及。血象正常。胸部、腹部CT未发现深部淋巴结肿大。哪项检查对诊断帮助最大
患者,男,25岁,CT示双侧听神经鞘瘤,右侧脑室三角区脑膜瘤。诊断
下列关于固定资产清查的会计表述正确的有()。
按照学生的能力、学习成绩或兴趣爱好分为不同组进行教学的组织形式称为()。
下列各句所用的修辞手法与句后括号内所标注的不符的是:
1984年,英国科学家首次发现南极上空出现臭氧层空洞。臭氧层空洞一般出现在每年9一10月,也就是南极的春季到夏季。近日,某研究小组研究发现,2015年9月臭氧层空洞的面积比2000年同时期缩小了450万平方千米,他们认为,过去30年中,世界各国为缩小南极上
树是结点的集合,它的根结点的数目是()。
Thebank【56】borrowersenoughinteresttopaytheexpenseofthebankandhavesomethingleftoverfor【57】Theinterestcannotbe
最新回复
(
0
)