首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
admin
2019-03-11
31
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xfˊˊ(x)+3x[fˊ(x)]
2
=1-e
-x
,且fˊ(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值.正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=fˊ(ξ)(x-a),
则
由fˊˊ(x)>0知,fˊ(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有fˊ(x)>fˊ(ξ),从而由上式得Fˊ(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因fˊ(x
0
)=0,故所给定的方程为fˊˊ(x
0
)=
,显然,不论x
0
>0,还是x
0
<0,都有fˊˊ(x
0
)>0,于是由fˊ(x
0
)=0与fˊˊ(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
yˊ-2yyˊ+xyˊ+y-x=0, ①
再求导,得
(3y
2
-2y+x)yˊˊ+(6y-2)(yˊ)
2
+2yˊ=1. ②
令yˊ=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得yˊˊ|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得
f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/VPP4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
函数y=ln(1-2x)在x=0处的n阶导数y(n)(0)=______.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2):1,则f"’(2)=_________.
已知矩阵B=A+kE正定,则k的取值为__________.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
微分方程=0的通解是_________.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A一E)X=0的(A+E)X=0的解.求A的特征值与特征向量.
求下列一阶常系数线性差分方程的通解:(Ⅰ)4yt+1+16yt=20;(Ⅱ)2yt+1+10yt一5t=0;(Ⅲ)yt+1一2yt=2t;(Ⅳ)yt+1—yt=4cos
设pn=,n=1,2,…,则下列命题正确的是()
随机试题
根据对公司的价值,客户分为()。
化合物①乙醇、②碳酸、③水、④苯酚的酸性由强到弱的顺序是()。
男性,60岁,近3~4个月来常于上楼、情绪激动、饱餐后出现胸前区压榨性疼痛,以胸骨后为明显,疼痛向左手内侧放射,每次发作持续1~3分钟不等,休息后缓解或含服硝酸甘油后缓解,发作时心电图见ST段水平下降≥0.05mV,T波低平,该例的诊断应为
38岁,初次妊娠,孕16周出现口渴,24周糖筛查,血糖值为10.5mmol/L。病人需要进一步检查( )
简述主动脉瓣狭窄所引起晕厥的临床特点。
肠套叠最常见的类型是
在公允价值模式计量下,需要在资产负债表日对投资性房地产进行减值测试的,如果可收回金额小于账面价值,就应当将其差额借记“资产减值损失”科目,贷记“投资性房地产减值准备”科目。()
阅读下列史料并回答问题:材料一1986年里根签署了美国参众两院批准的修正税法……根据这一法案,降低了个人所得的最高税率,使超富裕阶层的所得税平均降低了16%……改变了30多年来税率越定越高,特惠越来越多的情况,它实际上是大规模减税和局部增税的结
ExpertspredictthatChina’shealthcaremarketwillhaveanannualgrowthof6to8percentinthenextfewyears,makingiton
设A为4阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于()
最新回复
(
0
)