首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
给出如下5个命题: (1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则-x0必是-f(-x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞
admin
2019-03-11
47
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(-∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则-x
0
必是-f(-x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,fˊˊ(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xfˊˊ(x)+3x[fˊ(x)]
2
=1-e
-x
,且fˊ(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
-2y
2
+2xy-x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=-(n+1)处取得极小值.正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则-f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)-f(a)=fˊ(ξ)(x-a),
则
由fˊˊ(x)>0知,fˊ(x)在(a,+∞)内单调增加,因此,对任意的x与ξ,a<ξ<x,有fˊ(x)>fˊ(ξ),从而由上式得Fˊ(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因fˊ(x
0
)=0,故所给定的方程为fˊˊ(x
0
)=
,显然,不论x
0
>0,还是x
0
<0,都有fˊˊ(x
0
)>0,于是由fˊ(x
0
)=0与fˊˊ(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
yˊ-2yyˊ+xyˊ+y-x=0, ①
再求导,得
(3y
2
-2y+x)yˊˊ+(6y-2)(yˊ)
2
+2yˊ=1. ②
令yˊ=0,则由式①得y=x,再将此代入原方程有2x
3
-x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得yˊˊ|
(1,1)
>0,所以唯一驻点x
0
=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得
f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n-1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)e
x
;f
(n+2)
(x)=[x+(n+2)]e
x
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=-(n+1);又因f
(n+2)
(x
0
)=e
-(n+1)
>0,故点x
0
=-(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=-e
-(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/VPP4777K
0
考研数学三
相关试题推荐
设A和B是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是
定积分(sinx+1)dx________.
设矩阵B=A2+5A+6E,则=____________.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为,则λ2=λ3=5对应的线性无关的特征向量为________
设随机变量X服从参数为λ的指数分布,且E[(X一1)(X+2)]=8,则λ=________.
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是_____
微分方程y’tanx=ylny的通解是________.
一商店经销某种商品,每周进货量X与顾客对该种商品的需求量y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布,商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润500元,试计算此商店经销
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
交流接触器短路环的作用是()。
刺激生长素分泌的代谢因素中,作用最强的是
依《保险法》规定,从事保险活动必须遵守法律、行政法规,尊重社会公德,遵循自愿原则。( )
小李(女)大学毕业以后与某单位签订了劳动合同。某天,小李在下班途中受到机动车事故伤害,并因此住院治疗。根据上述材料,回答问题。职工或者其直系亲属认为是工伤,用人单位不认为是工伤的,由()承担举证责任。
某股份有限公司股本总额为5亿元,则该公司申请股票上市,其公开发行的股份最少应当达到公司股份总数的()以上。
中俄双方签订的第一个边界条约是(),它从法律上肯定了格尔必齐河以东,外兴安岭直至鄂霍次克海以南的乌苏里江和包括库页岛在内的黑龙江流域的广大地区,都是中国的领土。
设随机变量X服从正态分布N(μ,σ2),σ>0,则当σ增大时,概率P{|X一μ|<2σ)().
契约型基金反映的是()。
Socialsciencehasweighedinonthe"tigermom"debate,anditlookslikeeveryoneisright:Bothover-protectiveandlaid-back
Theinventionofthecomputerissaidtohaveusheredinanotherrevolution______ithasgreatlychangedpeople’swayofliving
最新回复
(
0
)