首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中 2α1一α2=[0,2,2,2]T, α1+α2+α3=[4,一1,2,3]T, 2α2+α3=[5,一1,0,1]T, 秩(A)=2,那么方程组AX=b的通解是__________.
admin
2022-04-10
60
问题
已知α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的3个解,其中
2α
1
一α
2
=[0,2,2,2]
T
,
α
1
+α
2
+α
3
=[4,一1,2,3]
T
,
2α
2
+α
3
=[5,一1,0,1]
T
,
秩(A)=2,那么方程组AX=b的通解是__________.
选项
答案
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
解析
利用方程组解的结构及其性质求之.
因为n一r(A)=4—2=2,所以方程组AX=b的通解形式为
α+k
1
η
1
+k
2
η
2
,
其中α为Ax=b的特解,η
1
,η
2
为AX=0的基础解系.
因此,下面应求出AX=b的一个解及AX=0的两个线性无关的解.
根据解的性质知,
2α
1
一α
2
=α
1
+(α
1
-α
2
)=[0,2,2,2]
T
是AX=b的解.而
(α
1
+α
2
+α
3
)一(2α
2
+α
3
)=α
1
一α
2
=[一1,0,2,2]
T
是AX=0的解.
3(2α
1
一α
2
)一(2α
2
+α
3
)=5(α
1
一α
2
)+(α
1
-α
3
)=[一5,7,6,5]
T
是AX=0的解.显然[一1,0,2,2]
T
与[一5,7,6,5]
T
线性无关(对应分量不成比例).
因此,方程组AX=b的通解为
[0,2,2,2]
T
+k
1
[一1,0,2,2]
T
+k
2
[一5,7,6,5]
T
,
其中k
1
,k
2
为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/VQR4777K
0
考研数学三
相关试题推荐
把下列函数展开傅里叶级数:(1)f(x)=sinx/3(-π≤x≤π);(2)f(x)=|sinx|(-π≤x≤π)(3)f(x)=cosλx(-π≤x≤π,0<λ<1);(4)
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
求∫arcsin2xdx.
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
已知方程组有解,证明:方程组无解.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
随机试题
对于认知风格属于场独立型的学生,下列方法适合场独立型学生的有()
在Word2010中,若需插入目录,应选择【】
Therewasalittleboyvisitinghisgrandparentsontheirfarm.Hewasgivenaslingshot(弹弓)toplaywith,outinthewoods.He【C
凝胶过滤法主要用于蛋白和核酸分离,又称为分子筛层析法,其常用介质是
蛙式打夯机作业时,电缆线不得张拉过紧,应保证有()m的余量,递线人应按夯实路线随时调整。
有助于改善商业银行声誉风险管理的操作实践有()。
目前,在我国义务教育和基础教育是同一个概念。
弗拉门戈舞是歌、舞和吉他音乐三位一体的艺术。一般认为它是从北印度岀发的吉卜赛人,几经跋涉来到西班牙南部,带来的一种融合印度、阿拉伯、犹太、拜占庭及西班牙南部元素的乐舞。因是被居住在西班牙安达鲁西亚的吉卜赛人创立传承,所以被称为弗拉门戈舞。_________
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
Thestudyoftherulesgoverningthewayswordsarecombinedtoformsentencesis______.
最新回复
(
0
)