首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
admin
2019-08-06
52
问题
设α
1
,α
2
,…,α
m-1
(m≥3)线性相关,向量组α
2
,…,α
m
线性无关,试讨论
α
1
能否由α
2
,α
3
,…,α
m-1
线性表示?
选项
答案
方法一:因为α
2
,α
3
,…,α
m
线性无关,所以α
2
,α
3
,…,α
m-1
也线性无关;又因为α
1
,α
2
,…,α
m-1
(m≥3)线性相关,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示. 方法二:因为α
1
,α
2
,…,α
m-1
线性相关,故存在不全为零的数k
1
,k
2
,…,k
m-1
使得 k
1
α
1
+k
2
α
2
+…+k
m-1
α
m-1
=θ, 其中必有k
1
≠0;否则,若k
1
=0,则k
2
,k
3
,…,k
m-1
不全为零,使得 k
2
α
2
+…+k
m-1
α
m-1
=θ 成立,从而α
2
,α
3
,…,α
m-1
线性相关,进而α
2
,…,α
m
线性相关,与已知矛盾,故k
1
≠0,α
1
=-(k
2
/k
1
)α
2
-…-(k
m-1
/k
1
)α
m-1
,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/U5J4777K
0
考研数学三
相关试题推荐
设u=u(x,y,z)连续可偏导,令若证明:u仅为r的函数.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设的一个特征值为λ1=,其对应的特征向量为判断A是否可对角化.若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
证明:满足微分方程y(4)-y=0并求和函数S(x).
设k>0,则函数的零点个数为().
随机试题
以下哪些表现不可能是由于患者的恐惧、焦虑导致的
口腔鳞状细胞癌对哪种药敏感
下列关于联合国的说法错误的是()。
该求助者的认知障碍包括()。对于该病例,最恰当的处理方式是()。
我国航空工业昌飞旋翼桨叶研发团队通过两年多的技术攻关,成功试制出约14米超大型直升机复合材料旋翼桨叶。材料是时代进步的重要标志。下列有关材料的说法正确的是()。
手术:医生:手术刀
已知总体方差为100,样本容量为50,那么样本标准差分布的标准差为
FortwostudentsadDwouldbemoreeconomicalthanadCbecause______.
Today,mostcountriesintheworldhavecanals.Manycountrieshavebuiltcanalsnearthecoast,andparalleltothecoast.Even
Leptiniseffectiveinreducingweightbutit’smanyyearsawaybeforehumanscanuseit.Bothobesemiceandnormalmicecanp
最新回复
(
0
)