首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论 α1能否由α2,α3,…,αm-1线性表示?
admin
2019-08-06
37
问题
设α
1
,α
2
,…,α
m-1
(m≥3)线性相关,向量组α
2
,…,α
m
线性无关,试讨论
α
1
能否由α
2
,α
3
,…,α
m-1
线性表示?
选项
答案
方法一:因为α
2
,α
3
,…,α
m
线性无关,所以α
2
,α
3
,…,α
m-1
也线性无关;又因为α
1
,α
2
,…,α
m-1
(m≥3)线性相关,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示. 方法二:因为α
1
,α
2
,…,α
m-1
线性相关,故存在不全为零的数k
1
,k
2
,…,k
m-1
使得 k
1
α
1
+k
2
α
2
+…+k
m-1
α
m-1
=θ, 其中必有k
1
≠0;否则,若k
1
=0,则k
2
,k
3
,…,k
m-1
不全为零,使得 k
2
α
2
+…+k
m-1
α
m-1
=θ 成立,从而α
2
,α
3
,…,α
m-1
线性相关,进而α
2
,…,α
m
线性相关,与已知矛盾,故k
1
≠0,α
1
=-(k
2
/k
1
)α
2
-…-(k
m-1
/k
1
)α
m-1
,所以α
1
能由α
2
,α
3
,…,α
m-1
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/U5J4777K
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且证明:f’(x0)=M.
对二元函数z=f(x,y),下列结论正确的是().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0.证明:α1,α2,…,αn线性无关;
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
设A=E-ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
随机试题
openedinjury
颌骨畸形的早期矫治一般在
属于纤维素性炎的是
秦统治者总结前代法律实施方面的经验,结合本朝特点,形成了一些刑罚适用原则。对于秦律原则的相关表述,下列哪一选项是正确的?(2017年卷一16题)
证券经营机构将自营业务与经纪业务混合操作所受到的最严厉的处罚是()
某城市的机动车车牌号由大写英文字母和0—9十个数字组成,共五位。若交通局规定第一位必须是字母,其余四位均为数字,请你计算尾号是0的机动车牌号有()个。
下列诗句未涉及秋天的是()。
包豪斯设计学院位于()。
Celebrityworshipisnowintherisingandsomeyoungsterscannotresistjumpingonthewagon.Giveyourcommentonthisphenome
TheMonaLisaisshowingherage,museumcurators(馆长)inParissaidwhileannouncingascientificstudyofthe500-year-oldmas
最新回复
(
0
)