首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2019-08-06
67
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
(1)求(I)的一个基础解系;
(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(I)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(I)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(I)的基础解系γ
1
=(5,一3,1,0)
T
,γ
3
=(一3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/V5J4777K
0
考研数学三
相关试题推荐
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设随机变量(X,Y)的联合密度函数为(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.证明:B=.
将下列累次积分交换积分次序:∫01dxf(x,y)dy;
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
A.主动脉口B.肺动脉口C.冠状窦口D.右肺静脉口E.上腔静脉口心脏静脉回流的入口是
7粉末静电喷涂的特点是什么?
()是衡量一个国家经济实力与购买力的重要指标。
辅助数据文件的后缀是()
梁启超,字卓如,号________,别署________。
宫外孕保守治疗中,用化学药物治疗的先决条件为
背景某房地产开发公司甲在某市老城区参与旧城改造建设,投资3亿元,修建1个四星级酒店,2座高档写字楼,6栋宿舍楼,建筑周期为20个月,该项目进行了公开招标,某建筑工程总公司乙中标,甲与乙签订工程总承包合同,双方约定:必须保证工程质量优良,保证工期,乙可以将
童年期的主要活动是()。
当IP包头中TTL值减为0时,路由器发出的ICMP报文类型为()。
以下属于SQL数据查询命令的是( )。
最新回复
(
0
)