首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2019-08-06
82
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
(1)求(I)的一个基础解系;
(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(I)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(I)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(I)的基础解系γ
1
=(5,一3,1,0)
T
,γ
3
=(一3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/V5J4777K
0
考研数学三
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
设A,B是满足AB=O的任意两个非零阵,则必有().
设随机变量(X,Y)在区域D={(x,y,)|0≤x≤2,0≤y≤1)上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
设X1,X2,…,Xn是取自总体X的简单随机样本,的数学期望为σ2,则a=___________,b=___________.
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则()
(1999年)设有微分方程y’一2y=φ(x),其中试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
.设f(x)=sinx—∫0x(x—t)f(t)dt,其中f(x)为连续函数,求f(x).
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
随机试题
甲状腺功能亢进症患者,抗甲状腺药物治疗第2个月,白细胞降至2.8×109/L,中性粒细胞降至0.40。下列治疗方案中选用
A.了解胆囊浓缩和收缩功能B.了解胆囊切除术后胆道的情况C.明确梗阻性黄疸的原因和部位D.明确肝内病变的范围和性质E.可同时显示胆道和胰管情况
A.输血B.脾切除C.雄激素治疗D.糖皮质激素治疗E.免疫抑制剂治疗重型再生障碍性贫血患者治疗首选
A.回阳救逆B.回阳救急,益气生脉C.温经散寒,养血通脉D.益气温经,和血通痹E.温阳补血,散寒通滞
A.温肺化饮B.引火归元C.理气和胃D.疏肝下气E.温肾助阳吴茱萸除散寒止痛,又能()。
下列选项中,()是正相关的。
关于矿井电气设备的种类,下列表述错误的是()。
以下不属于我国计算利息的传统标准的是()。
根据消费税法律制度的规定,下列情形中,应缴纳消费税的有()。
MorethanfortywomenhavebeenkilledinthewarinIraq.Hundredsofothershavebeen【S1】______.ThewarbeganinMarchof200
最新回复
(
0
)