首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
admin
2017-12-31
77
问题
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量, 故(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
,(2,-4,3,a+1)
T
线性相关,即 [*]=0,解得a=6. (2)因为(1,-2,1,2)
T
,(1,0,5,2)
T
,(-1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,-2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(-1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VTX4777K
0
考研数学三
相关试题推荐
设,a,b,c是三个互不相等的数,求y(n).
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.证明:,η∈(a,b),使得
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
设函数f(u)在(0,+∞)内具有二阶导数,且若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
计算积分
求函数的单调区间和极值,并求该函数图形的渐近线.
随机试题
青年小李认为牙好坏是天生的,刷不刷牙无所谓,牙防所医生告诉他正确的认识应是
A.髁突硬化B.髁突前斜面模糊不清C.髁突骨质增生D.髁突小凹陷缺损E.髁突囊样变表现为髁突边缘呈唇样或骨赘形成的是
小儿疾病谱中最为多见的是()
A.散寒止痛B.化湿和中C.凉血消肿D.定惊止痉E.清热解毒川乌除祛风除湿外,还可()。
在资产负债表填列过程中,下列各项可以直接按某一个会计科目总账余额填列的是()。
甲公司为房地产开发企业,对投资性房地产采用公允价值模式进行后续计量。(1)20×6年1月1日,甲公司以20000万元总价款购买了一栋已达到预定可使用状态的公寓。该公寓总面积为1万平方米,每平方米单价为2万元,预计使用寿命为50年,预计净残值为零。甲公司计
一提到发展,有人就想到GDP。一季度各地GDP增速普遍放缓,难免引起一些地方的担忧和顾虑,其实大可不必。GDP增速回落不但不会增加硬着陆的风险,反而有利于控制通胀水平,特别是在当前土地、能源资源等要素制约日益明显,劳动力价格上涨较快,石油、铁矿石等大宗商品
矛盾同一性在事物发展中的作用是()。
执行罚是行政处罚的实施和贯彻。()
以下序列中不符合堆定义的是(33)。
最新回复
(
0
)