首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶方阵。 (Ⅰ)若A,B相似,证明A,B的特征多项式相等; (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立; (Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A,B为同阶方阵。 (Ⅰ)若A,B相似,证明A,B的特征多项式相等; (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立; (Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
admin
2017-12-29
61
问题
设A,B为同阶方阵。
(Ⅰ)若A,B相似,证明A,B的特征多项式相等;
(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;
(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
选项
答案
(Ⅰ)若A,B相似,那么存在可逆矩阵P,使P
—1
AP=B,则 |λE一B| =|λE—P
—1
AP|=|P
—1
AEP—P
—1
AP| =|P
—1
(λE—A)P| =|p
—1
|λE—A ||P|=|λE一A|。 所以A、B的特征多项式相等。 (Ⅱ)令[*] 那么|λE一A|=λ
2
=|λE—B|。但是A,B不相似。否则,存在可逆矩阵P,使P
—1
AP=B=D,从而A:POP
—1
=D与已知矛盾。也可从r(A)=1,r(B)=0,知A与B不相似。 (Ⅲ)由A,B均为实对称矩阵知,A,B均相似于对角阵,若A,B的特征多项式相等,记特征多项式的根为λ
1
,…,λ
n
,则有 [*] 所以存在可逆矩阵P,Q,使P
—1
AP=[*]=Q
—1
BQ。 因此有(PQ
—1
)
—1
A(PQ
—1
)=B,矩阵A与B相似。
解析
转载请注明原文地址:https://kaotiyun.com/show/VmX4777K
0
考研数学三
相关试题推荐
计算行列式
设f(x)=,求曲线y=f(x)与直线y=所围成平面图形绕Ox轴旋转所成旋转体的体积.
设数列{an}满足a1=a2=1,且an+1=an+an-1,n=2,3,….证明:在时幂级数收敛,并求其和函数与系数an.
设(1)求证:若b>1,则发散;(2)当b=1时,试举出可能收敛也可能发散的例子.
A,B均是n阶矩阵,且AB—A+B.证明:A—E可逆,并求(A—E)-1.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)=xsinx+cosx,下列命题中正确的是
随机试题
(2020年德州德城区)中国教育史上,先贤()提出“君子有三乐”,“得天下英才而教育之”为其中一乐。
“一带一路”是指“丝绸之路经济带”和“21世纪海上丝绸之路”的简称。
结肠、直肠手术的术后饮食_______。
截瘫病损的部位在
下列属于心脏压塞性休克病因的是
基坑、槽土方开挖安全专项施工方案须进行专家论证的最小深度是()m。
直接关系到基金投资者回报的高低与稳定性的有()。
根据《行政诉讼法》及有关司法解释规定,(),人民法院可以缺席判决。
德育目标是教育目标在受教育者()方面的总体规格要求。
某硬磁盘有5个记录面,记录面上有效记录区域的内径为10cm,外径为30cm。磁道上记录的位密度为250bit/mm,道密度为10道/mm,每一磁道上分为16个扇区,每个扇区记录1KB(字节),磁盘旋转速度为10000转/分。则该硬磁盘的非格式化容量约为(2
最新回复
(
0
)