首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为同阶方阵。 (Ⅰ)若A,B相似,证明A,B的特征多项式相等; (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立; (Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A,B为同阶方阵。 (Ⅰ)若A,B相似,证明A,B的特征多项式相等; (Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立; (Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
admin
2017-12-29
78
问题
设A,B为同阶方阵。
(Ⅰ)若A,B相似,证明A,B的特征多项式相等;
(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;
(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
选项
答案
(Ⅰ)若A,B相似,那么存在可逆矩阵P,使P
—1
AP=B,则 |λE一B| =|λE—P
—1
AP|=|P
—1
AEP—P
—1
AP| =|P
—1
(λE—A)P| =|p
—1
|λE—A ||P|=|λE一A|。 所以A、B的特征多项式相等。 (Ⅱ)令[*] 那么|λE一A|=λ
2
=|λE—B|。但是A,B不相似。否则,存在可逆矩阵P,使P
—1
AP=B=D,从而A:POP
—1
=D与已知矛盾。也可从r(A)=1,r(B)=0,知A与B不相似。 (Ⅲ)由A,B均为实对称矩阵知,A,B均相似于对角阵,若A,B的特征多项式相等,记特征多项式的根为λ
1
,…,λ
n
,则有 [*] 所以存在可逆矩阵P,Q,使P
—1
AP=[*]=Q
—1
BQ。 因此有(PQ
—1
)
—1
A(PQ
—1
)=B,矩阵A与B相似。
解析
转载请注明原文地址:https://kaotiyun.com/show/VmX4777K
0
考研数学三
相关试题推荐
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
求不定积分
设=1,a为常数,则=________.
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
已知,求A的特征值和特征向量,a为何值时,A相似于A,a为何值时,A不能相似于A.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程组AX=0的通解是________.
下列命题正确的是()
设随机变量X1,X2,X3,X4相互独立且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4)。求行列式的概率分布。
已知且AX+X+B+BA=0,求X2006。
随机试题
高强度结构的铆接,铆接要领是________。
声嘶常见原因是__________和__________。
患儿男性,5岁,主诉近1年来右腰部间断胀痛,无血尿、尿频、尿急和尿痛,无排尿困难。查体:右上腹略饱满,双合诊右肾区可触及一软性包块,并随呼吸上下活动。该患儿最可能为以下哪一种疾病
寒湿腰痛日久不愈,兼见腰膝酸软无力.脉沉弱等症,治宜()湿热腰痛,治宜()
抽样方案是指所使用的()的组合。
对于可变更、可撤销民事行为,下列表述不正确的是()。
已知最早的纸本绘画《地主庄园图》出土于()
Excel中删除单元格是将单元格从工作表上完全移去,并移动相邻的单元格来填充空格,若对已经删除的单元格进行过引用,将导致出错,显示出错信息是#ERROR()
李某在下夜班回家的路上,发现有人正盗窃工厂仓库中的生产器材.便上前阻拦。窃贼掏出匕首刺向李某,搏斗中,窃贼被李某用力推倒在地,头撞在被盗器材的铁角上当场死亡。李某的行为是()。
一战从欧洲的战争变成全球范围的战争是在()。
最新回复
(
0
)