首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面曲线Ax2+2Bxy+Cy2=1 (C>0,AC-B2>0)为中心在原点的椭圆,求它的面积.
已知平面曲线Ax2+2Bxy+Cy2=1 (C>0,AC-B2>0)为中心在原点的椭圆,求它的面积.
admin
2016-10-26
38
问题
已知平面曲线Ax
2
+2Bxy+Cy
2
=1 (C>0,AC-B
2
>0)为中心在原点的椭圆,求它的面积.
选项
答案
椭圆上点(x,y)到原点的距离平方为d
2
=x
2
+y
2
,条件为Ax
2
+2Bxy+Cy
2
-1=0. 令F(x,y,λ)=x
2
+y
2
-λ(Ax
2
+2Bxy+Cy
2
-1),解方程组 [*] 将①式乘x,②式乘y,然后两式相加得 [(1-Aλ)x
2
-Bλxy]+[-Bλxy+(1-Cλ)γ
2
]=0, 即 x
2
+y
2
=λ(Ax
2
+2Bxy+Cy
2
)=λ,于是可得d=[*]. 从直观知道,函数d
2
的条件最大值点与最小值点是存在的,其坐标不同时为零,即联立方程组F′
x
=0,F′
y
=0有非零解,其系数行列式应为零,即 [*] 该方程一定有两个根λ
1
,λ
2
,它们分别对应d
2
的最大值与最小值.因此,椭圆的面积为 [*]
解析
只需求椭圆的半长轴a与半短轴b,它们分别是椭圆上的点到中心(原点)的距离的最大值与最小值.因此,归结为求解条件极值问题.
转载请注明原文地址:https://kaotiyun.com/show/Vmu4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
下列各对函数中,两函数相同的是[].
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记证明曲线积分I与路径无关;
当x>0时,曲线().
求极限
随机试题
对称度要求较高的台阶面,通常采用换面法(转过180°)加工。
A.急性浆液性滑膜炎B.慢性浆液性滑膜炎C.化脓性滑膜炎D.骨关节炎E.关节脱位关节囊高度膨大,无热无痛,触诊有波动感,轻度跛行。该病最可能是
女,32岁。药物流产后3天,左下腹痛伴发热2天。妇科检查:阴道脓性分泌物,宫颈举痛,子宫饱满,压痛(+),右附件区明显压痛。最可能的诊断是
人民法院判决撤销违法的被诉行政行为,将会给国家利益、公共利益或者他人合法权益造成损失的,人民法院在判决撤销的同时,可以采取下列哪些措施?()
某单层建筑位于平坦场地上,基础埋深d=1.0m,按该场地的大气影响深度取胀缩变形的计算深度zn=3.6m,计算所需的数据列于下表,则按《膨胀土地区建筑技术规范》(GBJ112—87)计算所得的胀缩变形量最接近()。
以下各项费用中,关于施工机械安拆费及场外运费的组成和确定说法中错误的是()。
经济过热时期,政府采取紧缩性货币政策减少货币供给,则LM曲线左移,如果要使得均衡收入的变动量接近LM曲线的移动量,则必须要()。
下列关于法律部门的表述正确的有()。
下列属于错误记忆的重要研究是()
A、Sheacceptstheoffer.B、Shedoesn’tbother.C、Shedeclinestheoffer.D、Shegetssomethingelse.CM:Sue,wouldyoulikeasa
最新回复
(
0
)