首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
admin
2019-07-10
67
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f
’
(η)f
’
(ζ)=1.
选项
答案
(Ⅰ)即证[*]在(0,1)存在零点. 由于F(x)在[0,1]连续,且F(0)=-1,F(1)=1,即F(0).F(1)<0, 由连续函数的零点存在性定理知,[*]ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1-ξ. (Ⅱ)利用题(Ⅰ)的结果,在[0,ξ]上用拉格朗日中值定理知,[*]η∈(0,ξ),使得[*] 在[ξ,1]上,用拉格朗日中值定理知,[*]ζ∈(ξ,1),使得[*],两式相乘得f
’
(η).f
’
(ζ)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/VoN4777K
0
考研数学二
相关试题推荐
已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足=e1/x,求f(x)。
求函数f(x)=(1+x在区间(0,2π)内的间断点,并判断其类型。
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
如图,C1和C2分别是y=1/2(1+ex)和y=ex的图形,过点(0,1)的曲线C3是一单调增函数的图形。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=_______。
已知线性方程组(1)a,b为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时,求出方程组的全部解.
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x.(1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.(2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?(3)若f(0)=f’(0)=0,证
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A为三阶方阵,A*为A的伴随矩阵,|A|=1/3,求|4A一(3A*)-1|.
随机试题
下列选项中不是薄膜衣优点的是
乙酰水杨酸的含量测定可采用
保持一份平静的心态,快乐自己,欣慰他人,不要刻意地去追求金钱与名誉,一切都只不过是浮云,身外之物,够用就行;刻意地追求,只会让自己身陷囹圄。无论学习与牛活,都应该将自己的内心世界升华到一个更佳的高度,而这个高度说起来却是一件很简单的事,两个字*乐观。与其在
理财师的职业道德准则中的第一要点就是理财师要()。
劳动法律责任的形式不包括()。
学生的学习内容有()。
锦山明珠小区始建于2001年底,是一个新型的高档的住宅小区,业主以公务员、教师、企业家居多,业主生活档次比较高,他们的各种需求相对于老小区来说要高得多。到2004年底,第一期工程的住房交付后,许多入住的业主明显感觉到物业公司管理不到位,环境卫生,安全防范工
读图5,完成下列问题。中国第一长河________长江是图中的________(a或b),它发源于________地区(填字母)。
χ→0时由1-ccosaχ~[*]χ2得[*]
Itneveroccurredtohimthatheandhisdoingwerenotofthemostintenseandfascinatinginteresttoanyonewithwhomhecame
最新回复
(
0
)