首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
admin
2021-01-19
29
问题
[2013年] 设二次型
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
3x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
证明二次型f对应的矩阵为2αα
T
+ββ
T
;
选项
答案
按二次型矩阵的定义证之. 证一 令X=[x
1
,x
2
,x
3
]
T
,则 a
1
x
1
+a
2
x
2
+a
3
x
3
=[x
1
,x
2
,x
3
][*]=[a
1
,a
2
,a
3
][*] b
1
x
1
+b
2
x
2
+b
3
x
3
=[x
1
,x
2
,x
3
][*]=[b
1
,b
2
,b
3
][*] 故2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)(a
1
x
1
+a
2
x
2
+a
3
x
3
) =2[x
1
,x
2
,x
3
][*][a
1
,a
2
,a
3
][*] =2(X
T
α)(α
T
X)=2X
T
(αα
T
)X, (b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2X
T
(ββ
T
)X, 故f(x
1
,x
2
,x
3
)=X
T
(2αα
T
+ββ
T
)X.又因(2αα
T
+ββ
T
)
T
=2(αα
T
)
T
+(ββ
T
)
T
=2αα
T
+ββ
T
,即2αα
T
+ββ
T
为对称矩阵,所以二次型f对应的矩阵为A=2αα
T
+ββ
T
. 证二 将f(x
1
,x
2
,x
3
)的表达式展开,直接写出二次型f的矩阵,并将其化为2αα
T
+ββ
T
,得到A=2αα
T
+ββ
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vv84777K
0
考研数学二
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=__________.
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是__________。
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是______.
设f(x1,x2)=,则二次型的对应矩阵是_________。
三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0的通解为y=___________.
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
随机试题
A.坐骨棘B.髂嵴C.坐骨结节D.骶岬E.髂前上棘
六淫中最易致肿疡的是
在项目的实施阶段,项目总进度不仅是施工进度,还包括()。
招标人采用邀请招标方式的,至少应当向()个具备承担招标项目的能力、资信良好的特定的法人或者其他组织发出投标邀请书。
联系实际谈谈如何培养学生的良好态度与品德。
曲线在t=0对应点处的法线方程为________.
A、 B、 C、 D、 C
软件系统运行时发现了系统测试阶段尚未发现的错误,改正这些错误属于______维护。A.正确性B.适应性C.完善性D.预防性
BSP的数据类按信息生命周期分成存档、事务、计划、统计四类,下面属于计划类数据的是
Eatingtoomuchfatcan______toheartdiseaseandhighbloodpressure.
最新回复
(
0
)