首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 证明二次型f对应的矩阵为2ααT+ββT;
admin
2021-01-19
48
问题
[2013年] 设二次型
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
3x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
证明二次型f对应的矩阵为2αα
T
+ββ
T
;
选项
答案
按二次型矩阵的定义证之. 证一 令X=[x
1
,x
2
,x
3
]
T
,则 a
1
x
1
+a
2
x
2
+a
3
x
3
=[x
1
,x
2
,x
3
][*]=[a
1
,a
2
,a
3
][*] b
1
x
1
+b
2
x
2
+b
3
x
3
=[x
1
,x
2
,x
3
][*]=[b
1
,b
2
,b
3
][*] 故2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)(a
1
x
1
+a
2
x
2
+a
3
x
3
) =2[x
1
,x
2
,x
3
][*][a
1
,a
2
,a
3
][*] =2(X
T
α)(α
T
X)=2X
T
(αα
T
)X, (b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2X
T
(ββ
T
)X, 故f(x
1
,x
2
,x
3
)=X
T
(2αα
T
+ββ
T
)X.又因(2αα
T
+ββ
T
)
T
=2(αα
T
)
T
+(ββ
T
)
T
=2αα
T
+ββ
T
,即2αα
T
+ββ
T
为对称矩阵,所以二次型f对应的矩阵为A=2αα
T
+ββ
T
. 证二 将f(x
1
,x
2
,x
3
)的表达式展开,直接写出二次型f的矩阵,并将其化为2αα
T
+ββ
T
,得到A=2αα
T
+ββ
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vv84777K
0
考研数学二
相关试题推荐
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是__________。
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是______.
设f(x1,x2)=,则二次型的对应矩阵是_________。
已知矩阵X满足A*X=A一1+2X,其中A*是A的伴随矩阵,则X=_________.
设A=有三个线性无关的特征向量,则a=_________.
设f(x)在[a,b]上连续,证明:
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)