首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在点x=a处四阶可导,且f’(a)=f"(a)=f"’(a)=0,但f(4)(a)≠0.求证:当f(4)(a)>0时f(a)是f(x)的极小值;当f(4)(a)<0时f(a)是f(x)的极大值.
设f(x)在点x=a处四阶可导,且f’(a)=f"(a)=f"’(a)=0,但f(4)(a)≠0.求证:当f(4)(a)>0时f(a)是f(x)的极小值;当f(4)(a)<0时f(a)是f(x)的极大值.
admin
2018-06-14
11
问题
设f(x)在点x=a处四阶可导,且f’(a)=f"(a)=f"’(a)=0,但f
(4)
(a)≠0.求证:当f
(4)
(a)>0时f(a)是f(x)的极小值;当f
(4)
(a)<0时f(a)是f(x)的极大值.
选项
答案
由题设可得f(x)在x=a处带皮亚诺余项的4阶泰勒公式为 f(x)=f(a)+f’(x一a)+[*]f"’(a)(x一a)
3
+[*]f
(4)
)(a)(x一a)+ο((x一a)
4
) =f(a)+[*]f
(4)
(a)(x一a)
4
+ο((x一a)
4
), 从而 [*] 由极限的保号性质可得,存在δ>0使得当0<|x一a|<δ时[*]f
(4)
(a)同号,即f(x)一f(a)与f
(4)
(a)同号. 故当f
(4)
(a)>0时就有f(x)一f(a)>0在0<|x一a|<δ中成立,即f(a)是f(x)的一个极小值;当f
(4)
(a)<0时就有f(x)一f(a)<0在0<|x一a|<δ中成立,即f(a)是f(x)的一个极大值.
解析
转载请注明原文地址:https://kaotiyun.com/show/W2W4777K
0
考研数学三
相关试题推荐
求
设f(t)二阶可导,g(u,υ)二阶连续可偏导,且z=f(2x一y)+g(x,xy),求
设z=f(x,y)=x2arctan=________.
设f(x,y)在点(0,0)的某邻域内连续,且满足=一3,则函数f(x,y)在点(0,0)处().
设f(x)=∫0tanxarcta.t2dt,g(x)=x一sinx,当x→0时,比较这两个无穷小的关系.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为,求EY.
已知矩阵A与B相似,其中A=.求a,b的值及矩阵P,使P-1AP=B.
在最简单的全概率公式P(B)=P(A)P(B|A)+中,要求事件A与B必须满足的条件是
从学校乘汽车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,且遇到红灯的概率为,设x表示途中遇到红灯的次数,则E(X)=________.
随机试题
天然的雄激素是:
简述教学模式的种类。
在社会主义市场经济条件下,加强医德建设,可以
张女士,57岁,化工厂退休职工,肥胖,绝经5年。高血压史20余年。因两次出现阴道流血,来社区卫生站咨询是否需进一步诊治。医生建议她应去中心医院明确诊断。张女士被诊断为子宫内膜癌,没有发现转移病灶。该病首选治疗方案是
按照承揽合同的法律规定,下列关于定作人义务的表述中,正确的是()。
《浙江省旅游管理条例》规定,发展旅游业应当实行()主导。
导游将散客旅游者接到饭店后应做好的工作有()。
按照设计图想象自己未来家的样子,这属于()。
【给定资料一】中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张浪
Youknowyouhavetoread"betweenthelines"togetthemostoutofanything.Iwanttopersuadeyoutodosomethingequallyim
最新回复
(
0
)