首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的
设二次型 f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的
admin
2019-12-26
91
问题
设二次型
f(x
1
,x
2
,x
3
)=x
T
Ax=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),
其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
由矩阵A的特征多项式 [*] 得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E-A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=-3,解齐次线性方程组(-3E-A)x=0,得基础解系 ξ
3
=(1,0,-2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 令矩阵 [*] 则Q为正交矩阵,在正交变换x=Qy下,有 [*] 且二次型的标准形为 f=2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/WJD4777K
0
考研数学三
相关试题推荐
设A=已知方程组Ax=b有无穷多解,求a的值并求其通解.
设有某种零件共100个,其中10个是次品,其余为合格品,现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为_________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|—|μ≥2}≤_____________.
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为____________.
设P(A)=0或1,证明A与其他任何事件B相互独立.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
二次型f(x1,x2,x3)=x12+5x22+x32—4x1x2+2x2x3的标准形可以是()
(I)设求(Ⅱ)求
(96年)设某种商品的单价为p时,售出的商品数量Q可以表示成Q=-c.其中a、b、c均为正数,且a>bc.(1)求P在何范围变化时,使相应销售额增加或减少;(2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
随机试题
某地打算在绿地上建两个圆形花坛,如下图所示,大圆的直径为6米,小圆的直径为2米,修建期间暂时在外围设置围栏。已知围栏呈矩形,大圆与围栏的三条边相切,小圆与围栏的两条边相切,且两圆相切,那么矩形围栏的面积是多少平方米?
下列采取会计与财务合并设置的企业会计组织机构内部分工的设计模式的是()
治疗前庭大腺炎寒凝瘀滞证,应首选
[2011年第15题]一般情况下,砖混结构形式的多层建筑随层数的增加,土建单方造价(元/m2)会呈何变化?
【背景资料】某施工单位承接了农村公路的5×16m简支板桥施工项目,桥梁上部结构为先张法预应力空心板,下部结构为双柱式桥墩,基础为桩基础,桥面面层为5cm厚沥青混凝土,采用租赁摊铺机摊铺。桥头附近为砂性黏土,地势平坦,施工单位拟在此布置预制梁场,所需
向不同的会计资料使用者提供的财务会计报告,其编制依据应当一致。
为使供求机制朝着有利于经济发展的方向起作用,运输市场应是供给略小于需求的卖方市场。()
Ifthereisonecentral,recurringmistaketheUnitedStatesmakeswhendealingwiththerestoftheworld,itistoassumethat
如果菜单项的名称为“统计”,热键是T,在菜单名称一栏中应输入______。
A、StealAmazonusers’privateaccountinformation.B、SellindividualAmazonusernamesandpasswords.C、Startanattackonsome
最新回复
(
0
)