从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。 (Ⅰ)求这两条切线的切线方程; (Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。

admin2019-12-06  39

问题 从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。
(Ⅰ)求这两条切线的切线方程;
(Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。

选项

答案(Ⅰ)抛物线y=x2在点(a,a2)处的切线方程为y=2ax-a2,该切线过M点,则t2-1=2at-a2,解得a的两个解为a1=t-1,a2=t+1。从而求得抛物线y=x2-1上任意一点M(t,t2-1)引抛物线y=x2的两条切线为L1:y=2a1x-a12,L2:y=2a2x-a22。 (Ⅱ)两条切线与抛物线y=x2所围面积为 s(t)=∫a1t[x2-(2a1x-a12)]dx+∫ta2[x2-(2a2x-a22)]dx, 则S’(t)=(t-a1)2-(t-a2)2=(t-t+1)2-(t-t-1)2=0,故S(t)为常数。

解析
转载请注明原文地址:https://kaotiyun.com/show/WTA4777K
0

随机试题
最新回复(0)