首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换。
设二次型f=x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换。
admin
2017-12-29
37
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
一4x
1
x
2
—4x
1
x
3
+2ax
2
x
3
经正交变换化为3y
1
2
+3y
2
2
+6y
3
2
,求a,b的值及所用正交变换。
选项
答案
二次型及其标准形的矩阵分别是 [*] 由于是用正交变换化为标准形,故A与B不仅合同而且相似。由1+1+1=3+3+b得b=一3。 对λ=3,则有 [*] =一2(a+2)
2
=0,因此a=一2(二重根)。 由(3E—A)x=0,得特征向量α
1
=(1,一1,0)
T
,α
2
=(1,0,一1)
T
。 由(一3E一A)x=0,得特征向量α
3
=(1,1,1)
T
。 因为λ=3是二重特征值,对α
1
,α
2
正交化有 β
1
=α
1
=(1,一1,0)
T
, [*] 令 C=(γ
1
,γ
2
,γ
3
)=[*] 经正交交换x=Cy,二次型化为3y
1
2
+3y
2
2
一3y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/WUX4777K
0
考研数学三
相关试题推荐
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是()
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程=3(1+t).
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设n阶矩阵A的秩为1,证明:A可以表示成n×1矩阵和1×n矩阵的乘积;
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解(Ф(1.645)=0.95)
设D是由直线x=一2,y=0,y=2以及曲线x=所围成的平面域,则
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)