首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
admin
2018-12-19
90
问题
设向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
对矩阵(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 当a≠一1时,行列式|α
1
,α
2
,α
3
|=a+1≠0,由克拉默法则可知线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解,此时向量组(Ⅱ)可由向量组(I)线性表示。同理,由行列式|β
1
,β
2
,β
3
|=6≠0,可知向量组(I)也可由向量组(Ⅱ)线性表示。向量组(I)与(Ⅱ)等价。 当a=一1时,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 因为r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),所以线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由α
1
,α
2
,α
3
线性表示。向量组(I)与(Ⅱ)不等价。 综上所述,当a≠一1时,向量组(I)与(Ⅱ)等价;当a=一1时,向量组(I)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://kaotiyun.com/show/WVj4777K
0
考研数学二
相关试题推荐
设y=f(x)是区间[0,1]上的任一非负连续函数.又设f(x)在区间(0,1)内可导,且,证明(1)中的x0是唯一的.
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内()
函数在[一π,π]上的第一类间断点是x=()
设函数f(x)满足f(1)=f’(1)=2.求极限.
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(2015年)设函数y=y(χ)是微分方程y〞+y′-2y=0的解,且在χ=0处y(χ)取得极值3,则y(χ)=_______.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设f(x)=2lnx,f[φ(x)3=ln(1-lnx),求φ(x)及其定义域.
设函数f(x)在定义域内可导,y=f(x)的图形如右图所示,则导函数y=f’(x)的图形为()
确定下列函数的定义域,并做出函数图形。
随机试题
A.窦房结B.房室交界C.心室肌D.浦肯野纤维收缩力最强的部位是()
证券投资组合的期望收益率等于组合中证券期望收益率的加权平均值,其中对权数的表述正确的是()。
发生涉及工程造价问题的施工合同纠纷时,如果仲裁庭认为需要进行证据鉴定,可以由()鉴定部门鉴定。
关于产褥期临床表现,下列哪项说法是错误的
共济失调型脑瘫患儿主要损伤部位为
对于伴热管及夹套管安装的说法,错误的是()。
甲某开了一蛋糕作坊,因规模不大。不难管理,甲对日常经营活动只是简单地记流水账,而不专门设置账簿。税务机关在检查过程中发现后,应对该作坊采取()方式征收税款。
下列有关进口货物税收优惠的说法,正确的有()。
Pentium微处理器在保护模式下,中断描述符表内最多有【】个中断描述符。
OnMay13,1940,WinstonChurchill,thenewlyappointedBritishPrimeMinister,gavehisfirstspeechtoParliament,hewasprep
最新回复
(
0
)