首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
admin
2018-12-19
66
问题
设向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
对矩阵(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 当a≠一1时,行列式|α
1
,α
2
,α
3
|=a+1≠0,由克拉默法则可知线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解,此时向量组(Ⅱ)可由向量组(I)线性表示。同理,由行列式|β
1
,β
2
,β
3
|=6≠0,可知向量组(I)也可由向量组(Ⅱ)线性表示。向量组(I)与(Ⅱ)等价。 当a=一1时,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 因为r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),所以线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由α
1
,α
2
,α
3
线性表示。向量组(I)与(Ⅱ)不等价。 综上所述,当a≠一1时,向量组(I)与(Ⅱ)等价;当a=一1时,向量组(I)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://kaotiyun.com/show/WVj4777K
0
考研数学二
相关试题推荐
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图4—2).
设证明f(x)是以π为周期的周期函数;
设D是位于曲线下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小.并求此最小值.
(2005年)如图,C1和C2分别是y=(1+eχ)和y=eχ的图像,过点(0,1)的曲线C3是一单调增函数的图像,过C2上任一点M(χ,y)分别作垂直于χ轴和y轴的直线lχ和ly.记C1,C2与lχ所围图形的面积为S1(χ);C2,C3与ly所围图形的面
(1994年)求曲线y=3-|χ2-1|与χ轴围成封闭图形绕y=3旋转所得的旋转体的体积.
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
设函数f(x)在定义域内可导,y=f(x)的图形如右图所示,则导函数y=f’(x)的图形为()
随机试题
关于《扬州慢》(淮左名都)一词,下列说法中正确的有()
胆囊结石的典型声像图表现,不包括
乳癖的病机是乳痈的病机是
下述哪项可以增加公司净营运资本?
根据财税[2009]59号文件和现行的《中华人民共和国企业所得税法》规定,当企业符合特殊性税务处理的其他条件,且股权支付金额不低于其交易支付总额的()时,企业合并可以使用资产重组的特殊性税务处理方法。
甲在自己实际控制的账户之间进行证券交易,影响证券交易量,诱使他人购买或卖出自己所持有的券种的行为属于欺诈客户的行为。()
导游人员的基本职责主要有()。
我国社会主义民族关系的基本特征是:平等、团结、互助、()。
Organizationsandsocietiesrelyonfinesandrewardstoharnesspeople’sself-interestintheserviceofthecommongood.Thet
下列叙述中正确的是()。
最新回复
(
0
)