首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(
admin
2018-12-19
88
问题
设向量组(I)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组(I)与(Ⅱ)不等价?
选项
答案
对矩阵(α
1
,α
2
,α
3
[*]β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 当a≠一1时,行列式|α
1
,α
2
,α
3
|=a+1≠0,由克拉默法则可知线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解,此时向量组(Ⅱ)可由向量组(I)线性表示。同理,由行列式|β
1
,β
2
,β
3
|=6≠0,可知向量组(I)也可由向量组(Ⅱ)线性表示。向量组(I)与(Ⅱ)等价。 当a=一1时,有 (α
1
,α
2
,α
3
[*] β
1
,β
2
,β
3
) [*] 因为r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),所以线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由α
1
,α
2
,α
3
线性表示。向量组(I)与(Ⅱ)不等价。 综上所述,当a≠一1时,向量组(I)与(Ⅱ)等价;当a=一1时,向量组(I)与(Ⅱ)不等价。
解析
转载请注明原文地址:https://kaotiyun.com/show/WVj4777K
0
考研数学二
相关试题推荐
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设证明f(x)是以π为周期的周期函数;
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定.设z=f(lny—sinx),求
下列结论正确的是().
(2015年)设D是第一象限中由曲线2χy=1,4χy=1与直线y=χ,y=χ围成的平面区域,函数f(χ,y)在D上连续,则(χ,y)dχdy=【】
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x)在定义域内可导,y=f(x)的图形如右图所示,则导函数y=f’(x)的图形为()
随机试题
两个频率相同的正弦量的相位差为180°,叫做同相。()
分泌黄体生成素的器官是
A、硫酸亚铁B、叶酸、维生素B12C、白消氨D、苯丁酸氮芥E、雄激素慢性粒细胞白血病首选()
A、内分泌失调B、舔唇不良习惯C、机体抵抗力下降D、残根残冠刺激E、消化不良慢性唇炎病因是
A.叶酸B.次黄嘌呤C.谷氨酰胺D.胸腺嘧啶E.尿酸5-氟尿嘧啶的化学结构类似于
有关双气囊三腔管的护理,正确的是( )。【历年考试真题】
为了贯彻实施安全生产管理制度,工程承包企业应结合自身实际情况建立健全本企业的安全生产规章制度,一般包括()等。
下图为黄土高原局部地区等高线图,实线是黄土表面等高线,虚线是黄土底面(基岩表面)等高线(单位:米)。读图完成。3月21日傍晚,假如天气晴朗,最有可能看到日落的地点是()。
“红星”啤酒开展“7个空瓶换1瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期间共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?()
RadioandTelevisionRadioandtelevisionweremajoragentsofsocialchangeinthe20thcentury.Radiowasoncethecenter
最新回复
(
0
)