首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)已知方程在区间(0,1)内有实根,试确定常数k的取值范围。
(2017年)已知方程在区间(0,1)内有实根,试确定常数k的取值范围。
admin
2018-04-17
76
问题
(2017年)已知方程
在区间(0,1)内有实根,试确定常数k的取值范围。
选项
答案
[*] 分母恒大于零,令g(x)=(1+x)ln
2
(1+x)一x
2
,可得 g’(x)=ln
2
(1+x)+2ln(1+x)一2x, [*] 故g’(x)在[0,1]上单调递减,从而x∈(0,1)时,g’(x)<g’(0)=0,g(x)在[0,1]上单调递减,从而x∈(0,1)时,g(x)<g(0)=0,因此有f’(x)<0,可知f(x)在(0,1)上单调递减,从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/WZX4777K
0
考研数学三
相关试题推荐
曲线的凸区间是________.
设函数Fn(x)=∫0xf(t)dt一x∈[0,+∞),其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;
求不定积分
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(x)表示)
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,与△x比较是()无穷小(Ⅱ)设函
(1998年)设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(ξn,0),则=_____。
[2006年]在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当l与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
随机试题
下列哪种情况下可以给予实施发明专利或者实用新型专利的强制许可?()
患者,男性,25岁。既往体健,晨起时发现双下肢无力,不能行走。查体:神志清,血压120/60mmHg,心率90次/分,双上肢肌力4级,双下肢肌力1级,肌张力低,双侧腱反射消失,血K+2.3mmol/L,Na+140mmol/L。最可能的诊断是
女性,22岁,自觉右侧锁骨上窝处囊性肿块到医院就诊。CT增强扫描如图所示,最可能的诊断是
女性,28岁,农民,3个月来咳嗽、咳少量白痰,伴乏力、低热、食欲下降,体重减轻6kg,月经不规律。体检发现左颈部可及2个黄豆大小淋巴结,质软、活动。胸片发现右上肺不均质片状阴影及肺门钙化影。若痰涂片找抗酸杆菌阳性,应首先给予下列哪种措施最适宜
已知,则f(x)在(0,π)内的正级数的和函数s(x)在处的值及系数b3分别为()。
根据法律规定,限制民事行为能力人订立的合同在()情况下是有效的。
人才尤其是杰出人才之所以难得,不是因为没有,而是因为凡眼不识、世俗不容。创造性人才的一个突出特点,就是不简单认同既成的事实,不拘泥于固定的想法,具有求异思维和批判精神。他们敢于打破常规,挑战权威,不按常理行事,不按规矩出牌,“扰乱”了现有的秩序,因而不易得
填入横线上最恰当的一项是:梅尧臣的诗句“梅须逊雪三分白,雪却输梅一段香”,常被后人引用,借以说明______。
Afterthe1884ThirdReformActand1885RedistributionAct,allofthefollowinggotthevoteEXCEPT______.
Onmeasuresofmentalsharpness,olderpeoplewhoatemorethantwoservingsofvegetablesdailyappeared____________(比那些很少吃或根本不
最新回复
(
0
)