首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
admin
2016-10-20
82
问题
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在0∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h))]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/WcT4777K
0
考研数学三
相关试题推荐
[*]
[*]
A,B是两个事件,则下列关系正确的是().
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
求下列极限
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
已知f(x)存(-∞,+∞)内可导,f(x-1)],求c的值.
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
已知yt=3et是差分方程yt-1+ayt-1=et的一个特解,则a=__________.
随机试题
卢梭关于主权的描述,下列说法正确的是
发热是一种常见的________。
下列何种疾病为器官特异性自身免疫病
A.切痂术B.削痂术C.蚕食脱痂D.磺胺嘧啶银冷霜保痂E.清创术
男性,50岁,反复咳嗽、咳痰4年,近半年来发作时常伴呼吸困难。体检:双肺散在哮鸣音,肺底部有湿啰音。肺功能测定:1秒钟用力呼气容积/用力肺活量为55%,残气容积/肺总量为35%。诊断应考虑为
反复使用最可能导致肝坏死的吸入麻醉药是
下列各项中,属于不相容职务的有()。
Ifafarmerwishestosucceed,hemusttrytokeepawidegapbetweenhisconsumptionandhisproduction.Hemuststorealarge
Hadheworkedharder,he______theexams.
Lookingforanewweightlossplan?Trylivingontopofamountain.Mountainaircontainslessoxygenthanairatloweraltitud
最新回复
(
0
)