首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
admin
2016-10-20
63
问题
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在0∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h))]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/WcT4777K
0
考研数学三
相关试题推荐
2
[*]
若α1,α2,…,αs的秩为r,则下列结论正确的是().
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
利用函数的凹凸性,证明下列不等式:
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
证明下列函数当(x,y)→(0,0)时极限不存在:
研究下列函数的连续性,如有间断点,说明间断点的类型:
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
一阶常系数差分方程yt+1一4t=16(t+1)4t满足初值y0=3的特解是yt=___________.
随机试题
防护栏杆必须自上而下用安全立网封闭,或在栏杆下边设置严密固定的高度不低于()的挡脚板或40cm的挡脚笆。
当屋面坡度大于()时,卷材防水层应采取固定措施。
地下室卷材防水并做暗散水时,其防水层和混凝土暗散水应沿外墙上翻高出室外地坪a值,外墙防水砂浆高度b值应是()。
2010年1月1日,ABC股份有限公司发行面值20000000元、票面利率为6%、期限为5年的债券,发行价格为21000000元,每年12月31日计算并支付利息一次,到期还本并支付最后一期利息;ABC股份有限公司采用实际利率法摊销债券溢价。假设整个过程没有
某家电商场为增值税一般纳税人,在元旦来临之际,采取“买一送一”方式销售电视机,共销售200台,每台价格4500元(不含税),同时送出200台豆浆机(市场不含税价格为500元/台),并用商场的货车运输,收取运费收入10000元。针对此业务该商场的销项税额
现代导游发展时期是指()。
货物贸易规模迅速扩大。“十一五”期间,我国货物进出口总额累计116806亿美元,比“十五”期间增长1.6倍。其中,出口总额63997亿美元,增长1.7倍;进口总额52809亿美元,增长1.4倍。5年间,进出口贸易年均增长15.9%,其中,出口年均增长15.
教育除了需要根据社会的变化而与时俱进、更新知识体系外,还应向受教育者提供许多“_______”的东西,比如创新意识和批判精神的_______,品行、修为的培养,智商、情商和灵商的开发。无论时间如何流逝,知识如何更新,上述内容都应始终存在于高等教育之中,成为
设
A、He’sputtingitinacage.B、Ken’stakingitonvacation.C、Itwillgowiththeman.D、ItwillbestayingwithKen.D男士说要让Ken来
最新回复
(
0
)