首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
admin
2016-10-20
52
问题
设h>0,f(x)在[a-h,a+h]上连续,在(a-h,a+h)内可导,证明:存在0<θ<1使得
选项
答案
令F(x)=f(a+x)+f(a-x),则F(x)在[0,h]上连续,在(0,h)内可导,由拉格朗日中值定理可得存在0∈(0,1)使得 [*] 由于 F(h)-F(0)=f(a+h)+f(a-h)-2f(a), F’(x)=f’(a+x)-f’(a-x), F’(θh)=f’(a+θh)-f’(a-θh), 因此存在满足0<θ<1的θ使得 [*]
解析
在[a,a+h]和[a-h,a]上分别对f(x)应用拉格朗日中值定理可得到存在θ
1
,θ
2
∈(0,1)使得
f(a+h)-f(a)=f’(a+θ
1
h)h, f(a-h)-f(a)=-f’(a-θ
2
h)h,
这时有
然而θ
1
与θ
2
未必相等.若将f(a+h)-2f(a)+f(a-h)重新组合成
f(a+h)-2f(a)+f(a-h)=[f(a+h)+f(a-h))]-[f(a+0)+f(a-0)],
我们发现它是F(x)=f(a+x)+f(a-x)在点x=h的值减去在点x=0的值,并且f’(a+θh)-f’(a-θh)=F’(θh),要证的等式就是对F(x)在[0,h]上应用拉格朗日中值定理的结果.
转载请注明原文地址:https://kaotiyun.com/show/WcT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 B
[*]
两封信随机地投入4个邮筒,求前两个邮筒没有信的概率及第一个邮筒恰有一封信的概率.
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(I)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(II)求解变换后的微分方程的通解.
随机试题
孙某委托吴某为代理人购买一批货物,吴某的下列行为中违反法律法规的是()。
《春风沉醉的晚上》是郁达夫的散文代表作。()
男性,50岁,慢性支气管疾患10余年,近3个月病情加重,痰中找到硫黄颗粒,右胸壁见瘘管,胸片示右下叶片状阴影,病变累及局部胸膜、胸壁,最可能的诊断是
造影时病人出现重度碘过敏反应,最有效的措施是
A、同一药物,剂型不同,其作用的快慢、强度、持续时间不同B、同一药物,制成同一剂型,由于制备工艺不同而表现不同C、同一药物,制成同一剂型,由于处方组成不同而表现不同D、同一药物,剂型不同,其副作用、毒性不同E、同一药物,
一般情况下,()的建筑工程可以不申请施工许可证。
(操作员:李主管;账套:501账套;操操作日期:2015年1月31日)修改并设置工资项目。工资表名:1月份工资表项目名称:岗位工资类型:数字长度:12小数:2
Alargenumberofcars______parkedinfrontofmyhouse.
可行性分析报告的重点内容是对建设方案的可行性分析和【】估计,最后得出分析结论。
程序设计方法要求在程序设计过程中
最新回复
(
0
)