首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是齐次方程组AX=0的基础解系,记β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1.实数t=_______时,β1,β2,β3,β4,也是AX=0的基础解系?
已知α1,α2,α3,α4是齐次方程组AX=0的基础解系,记β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1.实数t=_______时,β1,β2,β3,β4,也是AX=0的基础解系?
admin
2020-03-10
65
问题
已知α
1
,α
2
,α
3
,α
4
是齐次方程组AX=0的基础解系,记β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
.实数t=_______时,β
1
,β
2
,β
3
,β
4
,也是AX=0的基础解系?
选项
答案
-1
解析
转载请注明原文地址:https://kaotiyun.com/show/WeA4777K
0
考研数学二
相关试题推荐
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
设试证向量组α1,α2……αn与向量组β1β2……βn等价.
已知A=,求An.
设f(χ)在(-a,a)(a>0)内连续,且f′(0)=2.(1)证明:对0<χ<a,存在0<0<1,使得∫0χf(t)dt+∫0-χf(t)dt=χ[f(θχ)-f(-θχ)],(2)求
求星形线L:(a>0)所围区域的面积A.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αI(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
求微分方程y"+2y’+2y=的通解.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=_________
随机试题
嵌入式系统与普通的计算机系统相比,主要要求具有_______性和_______性。
产品线延伸策略,具体有______、向下延伸和双向延伸三种实现方式。
多发性骨髓瘤的最佳实验室诊断方法是
吐温一般在注射剂中作为
甲之子X因抢劫乙的财物一审被以抢劫罪定罪判刑。乙在司法机关作为X抢劫案的被害人作证。一审判决后,X提起—亡诉,甲聘请了律师丙作为X上诉案的辩护人。为使X逃避刑事处罚,丙伙同甲指使乙在二审法院审理案件期间改变了原证词,丙在此期间还面授X推翻原供述。
下列各项中,属于法律关系的客体的有()。
当一位新手型教师把大量时间都花在如何与学生搞好个人关系时,那么在教师成长过程中他属于()。
已知3阶方阵A的特征值为1,-2,3,则A的行列式|A|中元素a11,a22,a33的代数余子式的和A11+A22+A33=()
设f(x)在(a,b)内可导,下述结论正确的是()
A、 B、 C、 D、 C
最新回复
(
0
)