首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵。 证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
设A是n阶反对称矩阵。 证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵。
admin
2019-03-23
64
问题
设A是n阶反对称矩阵。
证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵。
选项
答案
根据反对称矩阵的定义:A
T
= —A,则 |A|=|A
T
|=|—A|=(—1)
n
|A|, 即[1—(—1)
n
]|A|=0。 若n=2k+1,必有|A|=0,此时A不可逆。所以A可逆的必要条件是n为偶数。 因为A
T
= —A,则由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(—A)
*
。 又因(lA)
*
=l
n—1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(—1)
2k
A
*
=A
*
, 即A
*
是对称矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/4TV4777K
0
考研数学二
相关试题推荐
设z=f(x,y)满足)=2x,f(x,1)=0,=sinx,求f(x,y).
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.①求f(x1,x2,x3)的矩阵的特征值.②如果f(x1,x2,x3)的规范形为y12+y22,求a.
用配方法化下列二次型为标准型(1)f(x1,x2,x3)=x12+2x22+2x1x2-2x1x3+2x2x3.(2)f(x1,x2,x3)=x1x2+x1x3+x2x3.
设矩阵A=相似于对角矩阵.(1)求a的值;(2)求一个正交变换,将二次型f(x1,x2,x3)=xTAx化为标准形,其中x=(x1,x2,x3)T.
假设A是n阶方阵,其秩r<n.那么在A的n个行向量中
随机试题
对尿失禁病人的护理中哪项是错误的( )
增加击实功,可提高土的最大干密度。()
主生产计划列出()在计划期内不同时间段的需求量。
下列各句中,没有语病的一句是()。
我国古代教育家苟子说“蓬生麻中,不扶自直;白沙在涅,与之俱黑”,这强调的是()因素对人的潜移默化的作用。
时间:速度
有黑、白棋子共300枚,按每堆3枚分成100堆,其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等,那么全部棋子中,白子共有多少枚?
西安事变中,蒋介石最终接受停止内战,联共抗日的主张,其主要原因是()。
A、 B、 C、 D、 B
某国商业银行体系共持有准备金300亿元,公众持有的通货数量为100亿元。中央银行对活期存款和非个人定期存款规定的法定准备率分别为15%和10%,据测算,流通中的现金漏损率为25%,商业银行的超额准备率为5%,而非个人定期存款比率为50%。试求:活期存款乘数
最新回复
(
0
)