首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
admin
2019-06-09
79
问题
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
求切线方程的难点在于求f'(1).因题中只给出了函数f(x)在一点x=1处可导,这就决定了只能用导数定义求出f'(1). 由题设有[*]=0,因[*]=0,由命题1.2.6.1及f(x)在x=0处连续,得到 [*][f(1+sinx)一3f(1一sinx)-8x]=f(1)一3f(1)=0,即f(1)=0. 因f(x)的周期为5,所以在点(6,f(6))处和点(1,f(1))处曲线的切线具有相同斜率,且 f(1)=f(1+5)=f(6),f'(1)=f'(1+5)=f'(6).因而只需求出f'(1).根据定义求之,由题设有[*]{[f(1+sinx)一3f(1一sinx)]/(8x)}=1,则 [*] 即f'(1)=f'(6)=2.又f(1)=f(6)=0,故在点(6,f(6))处的切线方程为 y=2(x一6), 即 2x—y一12=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WeV4777K
0
考研数学二
相关试题推荐
设A=,方程组AX=β有解但不唯一.求a;
设f(x)为可导函数,且f’(x)严格单调增加,则F(x)=在(a,b]内()
计算二重积分x(y+1)dσ,其中积分区域D是由y轴与曲线所围成。
设函数f(x)=在(一∞,+∞)内连续,且f(x)=0,则常数a,b满足()
在曲线y=x2(0≤x≤1)上取一点(t,t2)(0<t<1),设A1是由曲线y=x2(0≤x≤1),直线y=t2和x=0所围成图形的面积;A2是由曲线y=x2(0≤x≤1),直线y=t2和x=1所围成图形的面积,则t取________时,A=A1+A2取
(I)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限。
求函数f(x)=x2ln(1+x)在x=0处的n阶导数。
已知曲线L:(x≥0),点O(0,0),点A(0,1),设P是L上的动点,S是直线OA与直线AP及曲线L所围成图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
(2004年试题,一)设则f(x)的间断点为x=_________.
随机试题
economicglobalization
患者,男,45岁。暴饮暴食后出现上腹阵发性疼痛,并伴有腹胀、恶心、呕吐。呕吐物为宿食,停止肛门排气,患者半年前曾做过阑尾切除术。体检:腹胀、软,见肠型,轻度压痛,肠鸣音亢进。该患者出现肠梗阻,最可能的原因为
牛黄的功效是
对脑干损害有定位意义的体征是()
“十二五”时期,要加快发展现代农业,坚持走中国特色农业现代化道路,把保障()作为首要目标,加快转变农业发展方式,提高农业综合生产能力、抗风险能力和市场竞争能力。
地陪应在旅客抵达饭店后尽快办理入店手续,在游客进入房间前,地陪要向其介绍饭店的就餐形式、地点、时间。游客到餐厅的第一餐,地陪应主动引进。()修改:___________________________________
二十世纪二十年代,中国共产党在江西领导的主要革命斗争(运动)有()。
简要分析如何坚持开放发展。
Ifyouhaveeverwonderedhowanelephantsmells,scientistshavetheanswer.ResearchershavediscoveredthatAfricanElephants
Areyouinterested______tennis?
最新回复
(
0
)