首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在[a,b]上连续,在(a,b)上二阶可导,且f(a)=0,f(b)>0,f′+(a)<0。证明: (Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0; (Ⅱ)在(a,b)内至少存在一点η,使得f〞(η)>0。
设函数f(χ)在[a,b]上连续,在(a,b)上二阶可导,且f(a)=0,f(b)>0,f′+(a)<0。证明: (Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0; (Ⅱ)在(a,b)内至少存在一点η,使得f〞(η)>0。
admin
2017-11-30
49
问题
设函数f(χ)在[a,b]上连续,在(a,b)上二阶可导,且f(a)=0,f(b)>0,f′
+
(a)<0。证明:
(Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0;
(Ⅱ)在(a,b)内至少存在一点η,使得f〞(η)>0。
选项
答案
(Ⅰ)f′
+
(a)=[*]<0 由极限的保号性知,存在δ>0,当χ∈(a,a+δ)时,[*]<0,从而f(χ)<0。 取C∈(a,a+δ),则f(c)<0,于是f(χ)在[c,b]上连续。又f(c)<0,f(b)>0,由零点定理知,存在ξ∈(c,b)[*](a,b),使得f(ξ)=0。 (Ⅱ)对f(χ)在[a,c],[c,b]上用拉格朗日中值定理,存在r∈(a,c),s∈(c,b)使得 [*] 再对f′(χ)在[r,s]上用拉格朗日中值定理,存在η∈(r,s)[*](a,b),使得 f〞(η)=[*]>0。
解析
转载请注明原文地址:https://kaotiyun.com/show/Wfr4777K
0
考研数学一
相关试题推荐
积分
求直线在平面π:a—y+3z+8=0的投影方程.
若f(x)为[a,b]上的有界凹函数,则下列结论成立:①λ∈[0,1],f(λx1+(1一λ)x2)≤λf(x1)+(1一λ)f(x2),x1,x2∈[a,b];②③④.f(x)为(a,b)上的连续函数.
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:在任意一个不含原点在其内的单连通区域D0上,曲线积分与具体的c无关而仅与点A,B有关.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设求E(Z),D(Z);
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.
设f(x)在[a,b]上连续,在(a,b)内有二阶导数f"(x),又设连接点A=(a,f(a))及点B=(b,f(b))的线段与f(x)的图形有交点P,而P点异于A,B两点,证明存在点c∈(a,b),使得f"(c)=0。
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(0,0)(t,1)2xyydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y).
随机试题
(2018年德州齐河)“师也者,教之以事而喻诸德者也。”这体现了教师职业道德要求具有()
试说明机电一体化产品从设计到市场成熟经历的阶段。
A.正常B.炎症C.可疑癌D.高度可疑癌E.癌症宫颈刮片细胞学检查,报告为巴氏Ⅳ级,考虑为
A.乳房梭形切口B.乳房放射状切口C.乳晕部弧形切口D.乳晕边缘弧形切口E.乳房下缘弧形切口
双清口服液的主治为()。
建设单位在申请领取()时,应当提供建设工程有关安全施工措施的资料。
证券交易所会员应按月编制库存证券报表,并于次月10日前报送证券交易所。()
抑郁症表现为持久的()。
中国历史上第一个全国性的专职警察机构是1898年在长沙成立“巡警部”。()
______inafameduniversityabroadwaswhathisparentswishedfor.
最新回复
(
0
)