首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. 若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2015-07-22
30
问题
设二维非零向量α不是二阶方阵A的特征向量.
若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
由A
2
α+Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A一6E|=0,即 |3E+A|.|2E—A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E—A可逆,由(2E—A)(3E+A)α=0,得 (3E+A)α=0,即Aα=一3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值一3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Kbw4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为m×n矩阵,B为n×p矩阵,证明r(AB)≥r(A)+r(B)-n.
设矩阵,矩阵B=(kE+A)2,求对角矩阵A,使得B和A相似,并问k为何值时,B为正定矩阵.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设f(x)=,求f(x)的间断点并判断其类型。
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
根据题意设X1,X2,…,Xn是一个简单随机样本,因此X1,X2,…,Xn相互独立,且与总体同分布,从而可知[*]
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1-a的置信区间为().
随机试题
宏观社会经济环境的变化是推动组织变革的重要外部因素,下列属于宏观经济环境变化的有()
病人空腹血糖8.1mmol/L,空腹胰岛素31mU/L。该病人应考虑
某工程双代号网络计划如下图所示,其关键线路有()条。
根据企业破产法律制度的规定,对于债权人取得的附生效条件的债权,下列表述不正确的是()。
接上题。2×16年末,折现率仍为4%,则甲公司在2×16年末应确认的销售费用为()。
俗话说,“一双筷子容易折,十双筷子断就难”,你认为这说明了()。
3/10,7/20,(),1/2,1/2
第一次将“社会更加和谐”作为全面建设小康社会的重要奋斗目标是党的()
已知随机变量X服从参数为λ的指数分布,则概率
若要定义一个具有5个元素的整型数组,以下错误的定义语句是
最新回复
(
0
)