首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2017-12-18
66
问题
下列命题正确的是( ).
选项
A、若f(x)在x
0
处可导,则一定存在δ>0,在|x-x
0
|<δ内f(x)可导
B、若f(x)在x
0
处连续,则一定存在δ>0,在|x-x
0
|<δ内f(x)连续
C、若
存在,则f(x)在x
0
处可导
D、若f(x)在x
0
的去心邻域内可导,f(x)在x
0
处连续,且
存在,则f(x)在x
0
处可导,且f’(x
0
)=
答案
D
解析
对任意的a≠0,因为
不存在,所以f(x)在x=a处不连续,当然也不可导,即x=0是f(x)唯一的连续点和可导点,(A),(B)不对;
因为f(x)在x
0
处连续且在x
0
的去心邻域内可导,所以由微分中值定理有f(x)-f(x
0
)=f’(ξ)(x-x
0
)或者
=f’(ξ),其中ξ介于x
0
与x之间,两边取极限得
存在,即f(x)在x
0
处可导,且f’(x
0
)=
,选(D).
转载请注明原文地址:https://kaotiyun.com/show/X1k4777K
0
考研数学二
相关试题推荐
16
求下列极限:
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
已知f(x)是微分方程=_______.
设函数y=y(x)由方程y=1-xey确定,则=________.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).试求曲线L的方程;
曲线y=(1/x)+ln(1+ex),渐近线的条数为().
随机试题
(2013年4月)1947年正式提出“打倒蒋介石,解放全中国”的行动口号是在________发表的宣言。
简述投保人的概念及其应具备的条件。
初治肺结核的描述哪项是正确的
人造木板用于吊顶工程时必须复验的项目是:[2010年第61题]
某啤酒生产线扩建项目,位于原厂区西面100m的空地上,某国道从厂区北侧通过,距公路500m,距火车站26km,当地地形以山地高原为主,平原、绿洲、荒漠东西展开,南北更替,地势由西南向东北渐趋倾斜,当地地表水比较发达,地下水资源丰富。自然土壤由高山寒漠土、高
社区工作的具体目标有( )。
给定资料1.2014年3月5日,李克强总理在政府工作报告中指出,2014年将进一步推进教育发展和改革,使贫困地区农村学生上重点高校人数再增长10%以上,让更多农家子弟有升学机会。扶持农村教育始终是政府工作的重点。根据报告,2013年我国
下列哪一诗句描述的节日与其他三句不同?
2012年新修改的民事诉讼法增加了对公益诉讼制度的规定,这是环境公益诉讼在程序法方面的进步,但仍然缺少具体规定来________。而在司法实践中,由于相关法律条文的缺失,导致法院不受理环保诉讼的情况________。
A.牙龈切除术B.牙周翻瓣术C.引导性组织再生术D.截龈术E.牙冠延长术基础治疗后增生的牙龈未消退,应采取的牙周手术为()。
最新回复
(
0
)