首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)ey+f(y)ex成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)ey+f(y)ex成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
admin
2016-09-13
77
问题
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)e
y
+f(y)e
x
成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
选项
答案
axe
x
解析
由fˊ(0)存在,设法去证对一切x,fˊ(x)存在,并求出f(x).
将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得
f(x)=f(x)+f(0)e
x
,
所以f(0)=0.
令△x→0,得
fˊ(x)=f(x)+e
x
fˊ(0)=f(x)+ae
x
,
所以fˊ(x)存在.解此一阶微分方程,得
f(x)=e
x
(∫ae
x
.e
-x
dx+C)=e
x
(ax+C).
因f(0)=0,所以C=0,从而得f(x)==axe
x
,如上所填.
转载请注明原文地址:https://kaotiyun.com/show/X3T4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
设有一力场,场力的大小与作用点与z轴的距离成反比(比例系数为k),方向垂直于z轴并且指向z轴,试求一质点沿圆弧x=cost,y=1,z=sint从点(1,1,0)依t增加的方向移动到点(0,1,1)时场力所做的功.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
作适当的变换,计算下列二重积分:
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形,今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
随机试题
下列关于施工质量影响因素的说法,错误的是()。
简述企业技术创新战略的特点。
onmutuallydevelopitlongandacrosswhoevenefficientcomparative
如果使隐名代理产生显名代理的法律效果,则()。
中性粒细胞占白细胞总数的比例是()
家住A区的甲诉家住B区的乙借款纠纷一案由C区基层人民法院审理终结。借款纠纷案发生在D区,一审法院判决乙返还甲借款本金70000元,驳回了甲要求乙支付利息的请求。判决书向双方当事人送达后,乙向E市中级人民法院上诉,甲未上诉,但甲在答辩状中向二审法院提出了让乙
利用隔膜使溶剂或微粒分离的方法称为膜分离法。利用隔膜分离溶液时,使溶质通过膜的方法称为()。
在设计阶段,运用价值工程方法的目的是()。
简述问题解决的基本过程。
如果项目实际进度比计划提前20%,实际成本只用了预算成本的60%,首先应该(66)。
最新回复
(
0
)