首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)ey+f(y)ex成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)ey+f(y)ex成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
admin
2016-09-13
43
问题
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),f(x+y)=f(x)e
y
+f(y)e
x
成立,且fˊ(0)存在等于a,a≠0,则f(x)=_________.
选项
答案
axe
x
解析
由fˊ(0)存在,设法去证对一切x,fˊ(x)存在,并求出f(x).
将y=0代入f(x+y)=f(x)e
y
+f(y)e
x
,得
f(x)=f(x)+f(0)e
x
,
所以f(0)=0.
令△x→0,得
fˊ(x)=f(x)+e
x
fˊ(0)=f(x)+ae
x
,
所以fˊ(x)存在.解此一阶微分方程,得
f(x)=e
x
(∫ae
x
.e
-x
dx+C)=e
x
(ax+C).
因f(0)=0,所以C=0,从而得f(x)==axe
x
,如上所填.
转载请注明原文地址:https://kaotiyun.com/show/X3T4777K
0
考研数学三
相关试题推荐
[*]
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
按两种不同次序化二重积分为二次积分,其中D为:(1)由直线y=x及抛物线y2=4x所围成的闭区域;(2)由y=0及y=sinx(0≤x≤π)所围成的闭区域;(3)由直线y=x,x=2及双曲线y=1/x(x>0)所围成的闭区域;(4)由(x-1)2+
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
求方程karctanx-x=0不同实根的个数,其中k为参数.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
居住建筑的文化含义不包括
下列哪些疾病属纤维素性炎
某人民法院对被告人曹某等共同抢劫一案作出一审判决。曹某对犯罪事实供认不讳,仅以量刑过重为由提出上诉,其他被告人未提出上诉,人民检察院也未抗诉。二审法院经审理认为曹某构成犯罪,但曹某在二审作出裁判前因病死亡。二审法院应当如何处理该案件?()
2013年3月,王某在一次抢劫过程中,因行人报案,被市公安局侦查人员当场抓获。从侦查阶段到审判阶段,王某对被指控的抢劫罪没有异议。2013年6月15日。甲市基层人民法院正式受理了此案,并认为王某可能被判处3年以下有期徒刑,遂直接决定适用简易程序进行审理。2
下列上市公司中,可以公开发行优先股的有()。[2018年12月真题]Ⅰ.甲公司,其普通股为上证50指数成份股Ⅱ.乙公司,以公开发行优先股作为支付手段收购其他上市公司Ⅲ.丙公司,以减少注册资本为目的回购普通股,公开发行优先股作为支付
在信贷资产证券化过程中,()不属于信用增级的常用类型。
由于不可抗力因素导致的中断都属于非正常中断。()
在下列的管理沟通障碍中,属于客观障碍的有()。
心理现象是心理活动的表现形式。一般是指个人在社会活动中通过亲身经历和体验表现出的情感和意志等活动。根据上述定义,下列不属于心理现象的是()。
Whatdoweknowabouttheman?
最新回复
(
0
)