首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4)经行初等变换化为矩阵B=(β1,β2,β3,β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( ).
设矩阵A=(a1,a2,a3,a4)经行初等变换化为矩阵B=(β1,β2,β3,β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( ).
admin
2019-11-25
72
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
)经行初等变换化为矩阵B=(β
1
,β
2
,β
3
,β
4
),且a
1
,a
2
,a
3
线性无关,a
1
,a
2
,a
3
,a
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为a
1
,a
2
,a
3
线性无关,而a
1
,a
2
,a
3
,a
4
线性相关,所以a
4
可由a
1
,a
2
,a
3
唯一线性表示,又A=(a
1
,a
2
,a
3
,a
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,
β
2
,β
3
唯一线性表示,选C.
转载请注明原文地址:https://kaotiyun.com/show/X9D4777K
0
考研数学三
相关试题推荐
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
(1)若f(x)=,试证f’(0)=0;(2)若f(x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)dt,试证f(x)≡0(一∞<x<+∞).
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,C=,则|C|=_______.
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使一CS2的期望为μ2(其中,S2分别为样本X1,X2,…,Xn的均值和方差).
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数,若f(A)<0,则在区间内方程f(x)=0的实根个数为()
随机试题
简述我国小学德育应遵循的德育原则。
下列建筑管道绝热类型中,不属于按用途分类的是()。
财政部1994年6月同时颁布的三个有关会计电算化管理的文件包括()。
下列()不符合航空集装货物的基本原则。
根据行为金融学理论,投资者所具有的过分自信会导致其( )。
市场风险的计量方式不包括()。
采用成本法核算长期股权投资时,下列各项中应相应调减“长期股权投资”账面价值的是()。
Chancesareyourfriendsaremorepopularthanyouare.Itisabasicfeatureofsocialnetworksthathasbeenknownaboutfors
Reading______pleasureandlookingforopportunitiestoreadinEnglisharethetwofactorsmostcloselyrelated______successful
In1812,inavillagenearParis,alittleboyhithimselfintheeyewithoneofhisfather’s【B1】______tools,andbecameblind.
最新回复
(
0
)