首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4)经行初等变换化为矩阵B=(β1,β2,β3,β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( ).
设矩阵A=(a1,a2,a3,a4)经行初等变换化为矩阵B=(β1,β2,β3,β4),且a1,a2,a3线性无关,a1,a2,a3,a4线性相关,则( ).
admin
2019-11-25
39
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
)经行初等变换化为矩阵B=(β
1
,β
2
,β
3
,β
4
),且a
1
,a
2
,a
3
线性无关,a
1
,a
2
,a
3
,a
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为a
1
,a
2
,a
3
线性无关,而a
1
,a
2
,a
3
,a
4
线性相关,所以a
4
可由a
1
,a
2
,a
3
唯一线性表示,又A=(a
1
,a
2
,a
3
,a
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
a
1
+x
2
a
2
+x
3
a
3
=a
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,
β
2
,β
3
唯一线性表示,选C.
转载请注明原文地址:https://kaotiyun.com/show/X9D4777K
0
考研数学三
相关试题推荐
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=xe1-xf(x)dx(k>1).证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
[*]
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
设n阶矩阵A=,则|A|=________.
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足y’’(x)+p(x)y’(x)-q(x)y(x)=f(x),y(a)=y(b)=0,其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值。使该图形绕x轴旋转一周所得的立体体积最小.
求极限=_______.
极限
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’"(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
设y(x)是方程y(4)-yˊˊ=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
随机试题
优级淡色啤酒的浊度要求不大于()。
行政改革是国家公共行政系统的改革,其中心是()
已知函数f(x)=xarcsinx,则f’(1/2)=()。
肺癌又称为()。
A、羟甲戊二酰辅酶A还原酶抑制剂B、磷酸二酯酶抑制剂C、血管紧张素转化酶抑制剂D、碳酸酐酶抑制剂E、粘肽转肽酶抑制剂氨力农
以下说法正确的是()。
商品的品质
犯罪嫌疑人一旦被捕,其所聘请的律师就不能再为其申请取保候审。()
[2002年]设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy.设M(x0,y0)为区域D上一点,问h(x,y)在该点沿平面上什么方向
あの人は私たちの会社で____年数が一番長いそうです。
最新回复
(
0
)