首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
admin
2021-04-07
65
问题
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
选项
A、有正的最大值,无负的最小值
B、有负的最小值,无正的最大值
C、既有正的最大值,又有负的最小值
D、既无正的最大值,又无负的最小值
答案
D
解析
由于y(x)在[a,b]上连续,所以y(x)在[a,b]上有最大值与最小值,又y(a)=y(b)=0,故在开区间(a,b)内至少存在一个最值点,也是极值点,设为x
0
,有y’(x
0
)=0,代入所给方程,有
y"(x
0
)-y(x
0
)=0,即y"(x
0
)=y(x
0
)。
如果y(x
0
)>0,则y"(x
0
)>0,由极值判别法知y(x
0
)是y(x)的一个极小值,同理,如果y(x
0
)<0,则y"(x
0
)<0,y(x
0
)是y(x)的一个极大值。
综上,在区间[a,b]上既不可能有使y(x)>0的最大值点,也不可能有使y(x)性0的最小值点,所以在区间[a,b]上只能是y(x)=0,选D。
转载请注明原文地址:https://kaotiyun.com/show/XEy4777K
0
考研数学二
相关试题推荐
设函数f(χ)=aχ(a>0,a≠1),则ln[f(1)f(2)…f(n)]=_______.
微分方程xy’+2y=sinx满足条件y|x=π=的特解为_________。
齐次线性方程组的一个基础解系为____________.
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
设4阶矩阵A与B相似,A的特征值为,则行列式|B-1-E|=_______.
设N维向量α=(A,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E—ααT,,其中A的逆矩阵为B,则a=______.
(1)设A是n阶方阵,满足A2=A,证明A相似于对角阵;(2)设,求可逆阵P使得P-1AP=Λ,其中Λ是对角阵.
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)().
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
设f(χ)为连续函数,证明:(1)∫0π(sinχ)=f(sinχ)dχ=πf(sinχ)dχ;(2)∫02π(|sinχ|)dχ=4f(sinχ)dχ.
随机试题
______,Idon’tthinkthecandidatehasachanceofwinningtheelectiontheyear.
下面哪项的直肠癌位于手指可触及的部位:
某大学有数百名学生突然去校医院看病,主要症状为腹痛、腹泻(一般每天5~8次),体温升高多在38℃以上。经调查,发病者中午都在学校食堂用餐,中午没有在食堂用餐者,没有发病。初步估计为食物中毒引起的暴发,如果派你去调查处理这次暴发,那么你需要采集的样品不包括下
某直立土坡坡高为10m,坡顶上重要建筑物至坡顶距离为8.0m,主动土压力为Ea,静止土压力为E0,支护结构上侧向岩土压力宜为()。
根据《企业会计制度》的规定,下列各项中,应计入企业产品成本的有()。
银行大堂经理向客户介绍个人理财产品,属于理财顾问服务。()
在质量改进过程中,如果分析现状用的是排列图,确认效果时必须用()。
中国共产党在中央机关设立的最早的保卫组织是( )。
集中打击或专项斗争,多数情况下由各省、自治区、直辖市从当地社会治安情况出发,()地开展。
判定人数、年龄、经费开支时可用的测量是()
最新回复
(
0
)