首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
admin
2021-04-07
36
问题
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
选项
A、有正的最大值,无负的最小值
B、有负的最小值,无正的最大值
C、既有正的最大值,又有负的最小值
D、既无正的最大值,又无负的最小值
答案
D
解析
由于y(x)在[a,b]上连续,所以y(x)在[a,b]上有最大值与最小值,又y(a)=y(b)=0,故在开区间(a,b)内至少存在一个最值点,也是极值点,设为x
0
,有y’(x
0
)=0,代入所给方程,有
y"(x
0
)-y(x
0
)=0,即y"(x
0
)=y(x
0
)。
如果y(x
0
)>0,则y"(x
0
)>0,由极值判别法知y(x
0
)是y(x)的一个极小值,同理,如果y(x
0
)<0,则y"(x
0
)<0,y(x
0
)是y(x)的一个极大值。
综上,在区间[a,b]上既不可能有使y(x)>0的最大值点,也不可能有使y(x)性0的最小值点,所以在区间[a,b]上只能是y(x)=0,选D。
转载请注明原文地址:https://kaotiyun.com/show/XEy4777K
0
考研数学二
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
∫0+∞x7dx=_______
设A=,B≠O为三阶矩阵,且BA=O,则r(B)=_______.
设A,B为3阶方阵,且|A|=1,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=________.
设曲线y=lnx与y=相切,则公共切线为______
若是(一∞,+∞)上的连续函数,则a=__________.
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=______
曲线上对应于t=1点处的法线方程为______。
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)T,则α2由α1,α3,α4表示的表达式为_______.
随机试题
制冷压缩机能量调节的方法有()调节法。
法律上有严格规定的、关涉具体经济法主体权义的程序是【】
最危险的多瓣膜病见于
小儿形体望诊,正确的起始部位是
甲亢患者术前准备时服用硫氧嘧啶可
甲是某合伙企业中的有限合伙人,在该合伙企业经营过程中,甲共取得分配的利润5万元。后来,甲因故退伙,退伙清算时甲从该合伙企业分得财产价值2万元。甲对基于其退伙前的原因发生的合伙企业债务,承担清偿责任的数额是()万元。
马克思主义理论体系的组成部分是()。
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
A、Howlistenersindifferentculturesshowrespect.B、Howspeakerscanwinapprovalfromtheaudience.C、Howspeakerscanmisund
A、Christmas-timeattacksmadebySomalirebels.B、AnexplosionatabusstationincentralNairobi.C、Thekillingofmorethan7
最新回复
(
0
)