首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
admin
2021-04-07
66
问题
设函数p(x)在区间[a,b]上连续,y(x)在区间[a,b]上具有二阶导数且满足y”(x)+p(x)y’(x)-y(x)=0,y(a)=y(b)=0,则在[a,b]上,y(x)( )
选项
A、有正的最大值,无负的最小值
B、有负的最小值,无正的最大值
C、既有正的最大值,又有负的最小值
D、既无正的最大值,又无负的最小值
答案
D
解析
由于y(x)在[a,b]上连续,所以y(x)在[a,b]上有最大值与最小值,又y(a)=y(b)=0,故在开区间(a,b)内至少存在一个最值点,也是极值点,设为x
0
,有y’(x
0
)=0,代入所给方程,有
y"(x
0
)-y(x
0
)=0,即y"(x
0
)=y(x
0
)。
如果y(x
0
)>0,则y"(x
0
)>0,由极值判别法知y(x
0
)是y(x)的一个极小值,同理,如果y(x
0
)<0,则y"(x
0
)<0,y(x
0
)是y(x)的一个极大值。
综上,在区间[a,b]上既不可能有使y(x)>0的最大值点,也不可能有使y(x)性0的最小值点,所以在区间[a,b]上只能是y(x)=0,选D。
转载请注明原文地址:https://kaotiyun.com/show/XEy4777K
0
考研数学二
相关试题推荐
已知f’(ex)=xe-x,且f(1)=0,则f(x)=__________。
方程组有解的充要条件是______________.
设A为三阶矩阵,且|A|=4,则=_______.
已知3维空间的一组基为α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T,则向量u=(2,0,0)T在该组基下的坐标是________.
设f(χ,y)在点(0,0)的邻域内连续,F(f)=f(χ,y)dσ,则=_______.
设封闭曲线L的极坐标方程为r=cos3θ,则L所围成的平面图形的面积为________
数列极限I=n2[arctan(n+1)—arctann]=___________.
当x>0,y>0,z>0时,求u(x,y,z)=lnx+lny+3lnz在球面x2+y2+z2=5R2上的最大值,并证明abc3≤(其中a>0,b>0,c>0)
设f(x)为连续函数,证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=πf(sinx)dx;
随机试题
患者,男性,28岁。阵发性心悸3年,每次心悸突然发生,持续半小时至3小时不等。本次发作时心律齐,200次/分,按摩颈动脉窦心律能突然减慢至正常;心电图QRS波形态正常,P波不明显。诊断为()
患者,病由抑郁而起,腹部结块,或左或右,走窜不定,按之略痛,脘胁不舒,暖气频频,便艰纳呆,苔薄,脉弦。证属
头孢菌素类( )。甲氧苄胺嘧啶类( )。
下列关于期货公司的股东、实际控制人或者其他关联人在期货公司从事期货交易的表述,错误的是()。[2012年6月真题]
Forthefirsttime,morewomenthanmenintheUnitedStatesreceiveddoctoraldegreeslastyear,theclimaxofdecadesofchang
原型化并不是孤立出现的事件,它是一个很活跃的过程,受控于项目管理。项目管理的功能包括:质量、资源、成本、时间和【】。
如下图所示,3com和Cisco公司的交换机相互连接,在两台交换机之间需传输VLANID为1、10、20和30的4个VIAN信息,Catalyst3548交换机VLANTrunk的正确配置是()。
以下叙述中正确的是
Scottandhiscompanions(同伴)wereterriblydisappointed.WhentheygottotheSouthPole,theyfoundtheNorwegians(挪威人)hadbea
Wheredoesthisconversationmostlikelytakeplace?
最新回复
(
0
)