设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=_______.

admin2019-08-11  26

问题 设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=_______.

选项

答案2

解析01xf"(2x)dx=012xf"(2x)d(2x)=02xf"(x)dx=02xdf’(x)
=[xf’(x)|02-∫02f’(x)dx]=(10-f(x)|02)=2
转载请注明原文地址:https://kaotiyun.com/show/33N4777K
0

最新回复(0)