首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
admin
2019-04-09
97
问题
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
选项
A、P(X=Y)=1/2
B、P(X=Y)=1
C、P(X+Y=0)=1/4
D、P(XY=1)=1/4
答案
A
解析
解一 仅(A)入选.首先要注意X与Y同分布绝不是X=Y或P(X=Y)=1.下面将随机变量表示的事件{X=Y),{X+Y}及{XY}分解为互斥事件的和事件,再求其概率.
{X=Y}={X=1,Y=1}+{X=-1,Y=-1} (两事件互斥),
{X+Y=0}={X=1,Y=-1}+{X=-1,Y=1) (两事件互斥),
{XY}=1={X=1,Y=1}+{X=-1,Y=-1} (两事件互斥).
再由两事件的独立性及互斥性,由已给的分布得到
P(X=Y)=P(X=1,Y=1)+P(X=-1,Y=-1)
=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)
=2×(1/4)=1/2,
P(X+Y=0)=P(X=1,Y=-1)+P(X=-1,Y=1)
=P(X=1)P(Y=-1)+P(X=-1)P(Y=1)=1/2,
P(XY=1)=P(X=1,Y=1)+P(X=-1,Y=-1)
=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)-1/2.
解二 仅(A)入选.用同一表格法求之.由题设条件易求得
故P(X=Y)=P(X=-1,Y=-1)+P(X=Y=1)=1/4+1/4=1/2,
P(X+Y=0)=P(X=-1,Y=1)+P(X=1,Y=-1)=1/4+1/4=1/2,
P(XY=1)=P(X=-1,Y=-1)+P(X=1,Y=1)=1/4+1/4=1/2.
转载请注明原文地址:https://kaotiyun.com/show/XKP4777K
0
考研数学三
相关试题推荐
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设A=,已知A有三个线性无关的特征向量,且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
设A,B为随机事件,P(A)>0,则P(B|A)=1不等价于()
设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则根据切比雪夫不等式有P{0<x+y<10}≥________。
设事件A、B、C满足P(ABC)>0,则P(AB|C)=P(A|C)P(B|C)的充要条件是()
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=______.
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
随机试题
对建立良好的程序设计风格,下面描述正确的是()。
WhyarethelistenerstoldtovisitaWebsite?
以下不属于维生素D缺乏性佝偻病早期临床表现的是
一张纸质报关单上最多填报20项商品。()
李四夫妇结婚多年,前不久,李四经助理理财规划师介绍,意识到作为一家之主的责任和重担,遂给自己买了一份人身保险,受益人为妻子。此份保险合同的关系人是()。
股票的未来收益包括()
采用______技术是为了减少由于过程相关性引起的流水线性能损失。
下面对对象概念描述错误的是()。
HowtoapproachReadingTestPartFive•ThispartoftheReadingTesttestsyourabilitytoidentifyadditionalorunnecessary
AnortherncoldspellgrippedmuchofnorthernandeasternChinayesterday,aslocalauthoritiesissuedterribleweatherwarning
最新回复
(
0
)